K-finite decidable objects and finite cardinals in an arbitrary topos

In an elemetary topos $\varepsilo$, we prove that the class of K-finite decidable objects is the same to the class of finite cardinals in E if and only if every K-finite decidable object X such that $X \longrightarrow 1$ is epic, then $1 \longrightarrow X $ is split epic.

Bibliographic Details
Main Author: Osvaldo Acuña Ortega
Format: Article
Language:Spanish
Published: Universidad de Costa Rica 2012-03-01
Series:Revista de Matemática: Teoría y Aplicaciones
Online Access:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2101