Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage

Summary: E2F transcription factors control the expression of cell-cycle genes. Cancers often demonstrate enhanced E2F target gene expression, which can be explained by increased percentages of replicating cells. However, we demonstrate in human cancer biopsy specimens that individual neoplastic cell...

Full description

Bibliographic Details
Main Authors: Hendrika A. Segeren, Lotte M. van Rijnberk, Eva Moreno, Frank M. Riemers, Elsbeth A. van Liere, Ruixue Yuan, Richard Wubbolts, Alain de Bruin, Bart Westendorp
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124720314388
id doaj-c1d07d9b856545479ac94bce00a560d6
record_format Article
spelling doaj-c1d07d9b856545479ac94bce00a560d62020-12-03T04:31:11ZengElsevierCell Reports2211-12472020-12-01339108449Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA DamageHendrika A. Segeren0Lotte M. van Rijnberk1Eva Moreno2Frank M. Riemers3Elsbeth A. van Liere4Ruixue Yuan5Richard Wubbolts6Alain de Bruin7Bart Westendorp8Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the NetherlandsDepartment of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Corresponding authorSummary: E2F transcription factors control the expression of cell-cycle genes. Cancers often demonstrate enhanced E2F target gene expression, which can be explained by increased percentages of replicating cells. However, we demonstrate in human cancer biopsy specimens that individual neoplastic cells display abnormally high levels of E2F-dependent transcription. To mimic this situation, we delete the atypical E2F repressors (E2F7/8) or overexpress the E2F3 activator in untransformed cells. Cells with elevated E2F activity during S/G2 phase fail to exit the cell cycle after DNA damage and undergo mitosis. In contrast, wild-type cells complete S phase and then exit the cell cycle by activating the APC/CCdh1 via repression of the E2F target Emi1. Many arrested wild-type cells eventually inactivate APC/CCdh1 to execute a second round of DNA replication and mitosis, thereby becoming tetraploid. Cells with elevated E2F transcription fail to exit the cell cycle after DNA damage, which potentially causes genomic instability, promotes malignant progression, and reduces drug sensitivity.http://www.sciencedirect.com/science/article/pii/S2211124720314388cell cycleanaphase-promoting complex/cyclosomeE2F transcriptionlive-cell imagingsingle-cell RNA sequencingDNA damage
collection DOAJ
language English
format Article
sources DOAJ
author Hendrika A. Segeren
Lotte M. van Rijnberk
Eva Moreno
Frank M. Riemers
Elsbeth A. van Liere
Ruixue Yuan
Richard Wubbolts
Alain de Bruin
Bart Westendorp
spellingShingle Hendrika A. Segeren
Lotte M. van Rijnberk
Eva Moreno
Frank M. Riemers
Elsbeth A. van Liere
Ruixue Yuan
Richard Wubbolts
Alain de Bruin
Bart Westendorp
Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
Cell Reports
cell cycle
anaphase-promoting complex/cyclosome
E2F transcription
live-cell imaging
single-cell RNA sequencing
DNA damage
author_facet Hendrika A. Segeren
Lotte M. van Rijnberk
Eva Moreno
Frank M. Riemers
Elsbeth A. van Liere
Ruixue Yuan
Richard Wubbolts
Alain de Bruin
Bart Westendorp
author_sort Hendrika A. Segeren
title Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
title_short Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
title_full Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
title_fullStr Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
title_full_unstemmed Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage
title_sort excessive e2f transcription in single cancer cells precludes transient cell-cycle exit after dna damage
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2020-12-01
description Summary: E2F transcription factors control the expression of cell-cycle genes. Cancers often demonstrate enhanced E2F target gene expression, which can be explained by increased percentages of replicating cells. However, we demonstrate in human cancer biopsy specimens that individual neoplastic cells display abnormally high levels of E2F-dependent transcription. To mimic this situation, we delete the atypical E2F repressors (E2F7/8) or overexpress the E2F3 activator in untransformed cells. Cells with elevated E2F activity during S/G2 phase fail to exit the cell cycle after DNA damage and undergo mitosis. In contrast, wild-type cells complete S phase and then exit the cell cycle by activating the APC/CCdh1 via repression of the E2F target Emi1. Many arrested wild-type cells eventually inactivate APC/CCdh1 to execute a second round of DNA replication and mitosis, thereby becoming tetraploid. Cells with elevated E2F transcription fail to exit the cell cycle after DNA damage, which potentially causes genomic instability, promotes malignant progression, and reduces drug sensitivity.
topic cell cycle
anaphase-promoting complex/cyclosome
E2F transcription
live-cell imaging
single-cell RNA sequencing
DNA damage
url http://www.sciencedirect.com/science/article/pii/S2211124720314388
work_keys_str_mv AT hendrikaasegeren excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT lottemvanrijnberk excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT evamoreno excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT frankmriemers excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT elsbethavanliere excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT ruixueyuan excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT richardwubbolts excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT alaindebruin excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
AT bartwestendorp excessivee2ftranscriptioninsinglecancercellsprecludestransientcellcycleexitafterdnadamage
_version_ 1724401548537102336