Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists.

By using a fragment-assembly strategy and bioisosteric-replacement principle, a series of novel piperazine derivatives were designed, synthesized, and evaluated for their cellular target-effector fusion activities and in vitro antiviral activities against HIV-1. Preliminary structure-activity relati...

Full description

Bibliographic Details
Main Authors: Tao Liu, Zhiyong Weng, Xiaowu Dong, Linjie Chen, Ling Ma, Shan Cen, Naiming Zhou, Yongzhou Hu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3538727?pdf=render
Description
Summary:By using a fragment-assembly strategy and bioisosteric-replacement principle, a series of novel piperazine derivatives were designed, synthesized, and evaluated for their cellular target-effector fusion activities and in vitro antiviral activities against HIV-1. Preliminary structure-activity relationships (SARs) of target compounds were concluded in this study, and five compounds were found to exhibited medium to potent CCR5 fusion activities with IC(50) values in low micromolar level. Among evaluated compounds, 23 h was found to be a CCR5 antagonist with an IC(50) value of 6.29 µM and an anti-HIV-1 inhibitor with an IC(50) value of 0.44 µM.
ISSN:1932-6203