On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs

Let D be a digraph with the vertex set V (D) and the arc set A(D). A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D) − N there exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and...

Full description

Bibliographic Details
Main Authors: Hell Pavol, Hernández-Cruz César
Format: Article
Language:English
Published: Sciendo 2014-02-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1727