Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence.

The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus,...

Full description

Bibliographic Details
Main Authors: Daniel S Mansur, Carlos Maluquer de Motes, Leonie Unterholzner, Rebecca P Sumner, Brian J Ferguson, Hongwei Ren, Pavla Strnadova, Andrew G Bowie, Geoffrey L Smith
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-02-01
Series:PLoS Pathogens
Online Access:http://europepmc.org/articles/PMC3585151?pdf=render
Description
Summary:The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKβ causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase β-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα) and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished β-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.
ISSN:1553-7366
1553-7374