Simulation for a Mems-Based CTRNN Ultra-Low Power Implementation of Human Activity Recognition
This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power....
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-09-01
|
Series: | Frontiers in Digital Health |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fdgth.2021.731076/full |