Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations

Abstract Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptome...

Full description

Bibliographic Details
Main Authors: Janne Koskimäki, Dongdong Zhang, Yan Li, Laleh Saadat, Thomas Moore, Rhonda Lightle, Sean P. Polster, Julián Carrión-Penagos, Seán B. Lyne, Hussein A. Zeineddine, Changbin Shi, Robert Shenkar, Sharbel Romanos, Kenneth Avner, Abhinav Srinath, Le Shen, Matthew R. Detter, Daniel Snellings, Ying Cao, Miguel A. Lopez-Ramirez, Gregory Fonseca, Alan T. Tang, Pieter Faber, Jorge Andrade, Mark Ginsberg, Mark L. Kahn, Douglas A. Marchuk, Romuald Girard, Issam A. Awad
Format: Article
Language:English
Published: BMC 2019-08-01
Series:Acta Neuropathologica Communications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40478-019-0789-0
id doaj-d491481086084d3caa544cf265ff3ba4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Janne Koskimäki
Dongdong Zhang
Yan Li
Laleh Saadat
Thomas Moore
Rhonda Lightle
Sean P. Polster
Julián Carrión-Penagos
Seán B. Lyne
Hussein A. Zeineddine
Changbin Shi
Robert Shenkar
Sharbel Romanos
Kenneth Avner
Abhinav Srinath
Le Shen
Matthew R. Detter
Daniel Snellings
Ying Cao
Miguel A. Lopez-Ramirez
Gregory Fonseca
Alan T. Tang
Pieter Faber
Jorge Andrade
Mark Ginsberg
Mark L. Kahn
Douglas A. Marchuk
Romuald Girard
Issam A. Awad
spellingShingle Janne Koskimäki
Dongdong Zhang
Yan Li
Laleh Saadat
Thomas Moore
Rhonda Lightle
Sean P. Polster
Julián Carrión-Penagos
Seán B. Lyne
Hussein A. Zeineddine
Changbin Shi
Robert Shenkar
Sharbel Romanos
Kenneth Avner
Abhinav Srinath
Le Shen
Matthew R. Detter
Daniel Snellings
Ying Cao
Miguel A. Lopez-Ramirez
Gregory Fonseca
Alan T. Tang
Pieter Faber
Jorge Andrade
Mark Ginsberg
Mark L. Kahn
Douglas A. Marchuk
Romuald Girard
Issam A. Awad
Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
Acta Neuropathologica Communications
Cerebral cavernous malformation
Cavernous angioma
Hemangioma
Ccm3
Mouse model
Transcriptome
author_facet Janne Koskimäki
Dongdong Zhang
Yan Li
Laleh Saadat
Thomas Moore
Rhonda Lightle
Sean P. Polster
Julián Carrión-Penagos
Seán B. Lyne
Hussein A. Zeineddine
Changbin Shi
Robert Shenkar
Sharbel Romanos
Kenneth Avner
Abhinav Srinath
Le Shen
Matthew R. Detter
Daniel Snellings
Ying Cao
Miguel A. Lopez-Ramirez
Gregory Fonseca
Alan T. Tang
Pieter Faber
Jorge Andrade
Mark Ginsberg
Mark L. Kahn
Douglas A. Marchuk
Romuald Girard
Issam A. Awad
author_sort Janne Koskimäki
title Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
title_short Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
title_full Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
title_fullStr Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
title_full_unstemmed Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations
title_sort transcriptome clarifies mechanisms of lesion genesis versus progression in models of ccm3 cerebral cavernous malformations
publisher BMC
series Acta Neuropathologica Communications
issn 2051-5960
publishDate 2019-08-01
description Abstract Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptomes of microdissected lesional neurovascular units (NVUs) from acute and chronic in vivo Ccm3/Pdcd10 ECKO mice, and cultured brain microvascular endothelial cells (BMECs) Ccm3/Pdcd10 ECKO . We identified 2409 differentially expressed genes (DEGs) in acute and 2962 in chronic in vivo NVUs compared to microdissected brain capillaries, as well as 121 in in vitro BMECs with and without Ccm3/Pdcd10 loss (fold change ≥ |2.0|; p < 0.05, false discovery rate corrected). A functional clustered dendrogram generated using the Euclidean distance showed that the DEGs identified only in acute in vivo NVUs were clustered in cellular proliferation gene ontology functions. The DEGs only identified in chronic in vivo NVUs were clustered in inflammation and immune response, permeability, and adhesion functions. In addition, 1225 DEGs were only identified in the in vivo NVUs but not in vitro BMECs, and these clustered within neuronal and glial functions. One miRNA mmu-miR-3472a was differentially expressed (FC = − 5.98; p = 0.07, FDR corrected) in the serum of Ccm3/Pdcd10 +/− when compared to wild type mice, and this was functionally related as a putative target to Cand2 (cullin associated and neddylation dissociated 2), a DEG in acute and chronic lesional NVUs and in vitro BMECs. Our results suggest that the acute model is characterized by cell proliferation, while the chronic model showed inflammatory, adhesion and permeability processes. In addition, we highlight the importance of extra-endothelial structures in CCM disease, and potential role of circulating miRNAs as biomarkers of disease, interacting with DEGs. The extensive DEGs library of each model will serve as a validation tool for potential mechanistic, biomarker, and therapeutic targets.
topic Cerebral cavernous malformation
Cavernous angioma
Hemangioma
Ccm3
Mouse model
Transcriptome
url http://link.springer.com/article/10.1186/s40478-019-0789-0
work_keys_str_mv AT jannekoskimaki transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT dongdongzhang transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT yanli transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT lalehsaadat transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT thomasmoore transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT rhondalightle transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT seanppolster transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT juliancarrionpenagos transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT seanblyne transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT husseinazeineddine transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT changbinshi transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT robertshenkar transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT sharbelromanos transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT kennethavner transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT abhinavsrinath transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT leshen transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT matthewrdetter transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT danielsnellings transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT yingcao transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT miguelalopezramirez transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT gregoryfonseca transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT alanttang transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT pieterfaber transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT jorgeandrade transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT markginsberg transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT marklkahn transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT douglasamarchuk transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT romualdgirard transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
AT issamaawad transcriptomeclarifiesmechanismsoflesiongenesisversusprogressioninmodelsofccm3cerebralcavernousmalformations
_version_ 1724692649001091072
spelling doaj-d491481086084d3caa544cf265ff3ba42020-11-25T03:01:40ZengBMCActa Neuropathologica Communications2051-59602019-08-017111510.1186/s40478-019-0789-0Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformationsJanne Koskimäki0Dongdong Zhang1Yan Li2Laleh Saadat3Thomas Moore4Rhonda Lightle5Sean P. Polster6Julián Carrión-Penagos7Seán B. Lyne8Hussein A. Zeineddine9Changbin Shi10Robert Shenkar11Sharbel Romanos12Kenneth Avner13Abhinav Srinath14Le Shen15Matthew R. Detter16Daniel Snellings17Ying Cao18Miguel A. Lopez-Ramirez19Gregory Fonseca20Alan T. Tang21Pieter Faber22Jorge Andrade23Mark Ginsberg24Mark L. Kahn25Douglas A. Marchuk26Romuald Girard27Issam A. Awad28Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesCenter for Research Informatics, The University of ChicagoNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesThe Molecular Genetics and Microbiology Department, Duke University Medical CenterThe Molecular Genetics and Microbiology Department, Duke University Medical CenterNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesDepartment of Medicine, University of California San DiegoDepartment of Cellular and Molecular Medicine, University of CaliforniaDepartment of Medicine and Cardiovascular Institute, University of PennsylvaniaUniversity of Chicago Genomics Facility, The University of ChicagoCenter for Research Informatics, The University of ChicagoDepartment of Medicine, University of California San DiegoDepartment of Medicine and Cardiovascular Institute, University of PennsylvaniaThe Molecular Genetics and Microbiology Department, Duke University Medical CenterNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesNeurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological SciencesAbstract Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptomes of microdissected lesional neurovascular units (NVUs) from acute and chronic in vivo Ccm3/Pdcd10 ECKO mice, and cultured brain microvascular endothelial cells (BMECs) Ccm3/Pdcd10 ECKO . We identified 2409 differentially expressed genes (DEGs) in acute and 2962 in chronic in vivo NVUs compared to microdissected brain capillaries, as well as 121 in in vitro BMECs with and without Ccm3/Pdcd10 loss (fold change ≥ |2.0|; p < 0.05, false discovery rate corrected). A functional clustered dendrogram generated using the Euclidean distance showed that the DEGs identified only in acute in vivo NVUs were clustered in cellular proliferation gene ontology functions. The DEGs only identified in chronic in vivo NVUs were clustered in inflammation and immune response, permeability, and adhesion functions. In addition, 1225 DEGs were only identified in the in vivo NVUs but not in vitro BMECs, and these clustered within neuronal and glial functions. One miRNA mmu-miR-3472a was differentially expressed (FC = − 5.98; p = 0.07, FDR corrected) in the serum of Ccm3/Pdcd10 +/− when compared to wild type mice, and this was functionally related as a putative target to Cand2 (cullin associated and neddylation dissociated 2), a DEG in acute and chronic lesional NVUs and in vitro BMECs. Our results suggest that the acute model is characterized by cell proliferation, while the chronic model showed inflammatory, adhesion and permeability processes. In addition, we highlight the importance of extra-endothelial structures in CCM disease, and potential role of circulating miRNAs as biomarkers of disease, interacting with DEGs. The extensive DEGs library of each model will serve as a validation tool for potential mechanistic, biomarker, and therapeutic targets.http://link.springer.com/article/10.1186/s40478-019-0789-0Cerebral cavernous malformationCavernous angiomaHemangiomaCcm3Mouse modelTranscriptome