Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network

The reliable distributed monitoring system provides the real-time video observation from the power cable tunnels when the preinstalled communication system is disabled in an emergency. The spherical robotic prototypes are designed as the sensor node based on the analysis of the robot dynamic model....

Full description

Bibliographic Details
Main Authors: Peng Zeng, Jiahong He, Bingtuan Gao
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9382970/
id doaj-d4e40508633c43df93f5f96b37c3eedf
record_format Article
spelling doaj-d4e40508633c43df93f5f96b37c3eedf2021-03-31T01:24:00ZengIEEEIEEE Access2169-35362021-01-019471254713510.1109/ACCESS.2021.30680059382970Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor NetworkPeng Zeng0Jiahong He1https://orcid.org/0000-0001-6889-9305Bingtuan Gao2https://orcid.org/0000-0001-6933-0743Electric Power Research Institute, Guizhou Power Grid Company Ltd., Guiyang, ChinaSchool of Electrical Engineering, Southeast University, Nanjing, ChinaSchool of Electrical Engineering, Southeast University, Nanjing, ChinaThe reliable distributed monitoring system provides the real-time video observation from the power cable tunnels when the preinstalled communication system is disabled in an emergency. The spherical robotic prototypes are designed as the sensor node based on the analysis of the robot dynamic model. A novel self-constructed mobile wireless sensor network (MWSN) is proposed to realize the communication and positioning functions through the fusion of the Ad-Hoc and ultra-wideband (UWB) approaches. The Ad-Hoc network consists of multiple robot nodes as sensor carriers and relay stations to transmit large amounts of data from the accident scene to the monitoring terminal. The UWB network consists of UWB tags and bases on each node and implements the leader-follower (LF) strategy to create the robot formation. In order to maximize the monitoring area and maintain the reliability of the network, the traditional LF strategy is optimized based on the <italic>N-X</italic> algorithm subjected to the constraints of node number, Ad-Hoc communication and UWB positioning range, and the power tunnel boundaries. A self-constructed MWSN consisting of five robotic nodes (<inline-formula> <tex-math notation="LaTeX">$N=5$ </tex-math></inline-formula>) is capable of covering 40 m of power cable tunnel, when the value of <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> is selected as 3. The network failure probability reduces from 73.5&#x0025; (<inline-formula> <tex-math notation="LaTeX">$X=0$ </tex-math></inline-formula>) to 0.2&#x0025; (<inline-formula> <tex-math notation="LaTeX">$X=3$ </tex-math></inline-formula>) when the malfunction probability of sensor node is 23.3&#x0025; due to the accident condition in the tunnel. Finally, the simulation and experimental results show that the optimized LF algorithm increases 20.2&#x0025; coverage of the network in the curve formation. The network transmits a monitoring video streaming with a <inline-formula> <tex-math notation="LaTeX">$320\times240$ </tex-math></inline-formula> pixel resolution and a delay less than 150 ms. The real-time video observation from the accident scene is significant to formulate the emergency countermeasure and investigate the direct cause of the accident.https://ieeexplore.ieee.org/document/9382970/Power cable tunnelmonitoring systemspherical robotmobile wireless sensor networkleader-follower strategyformation optimization
collection DOAJ
language English
format Article
sources DOAJ
author Peng Zeng
Jiahong He
Bingtuan Gao
spellingShingle Peng Zeng
Jiahong He
Bingtuan Gao
Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
IEEE Access
Power cable tunnel
monitoring system
spherical robot
mobile wireless sensor network
leader-follower strategy
formation optimization
author_facet Peng Zeng
Jiahong He
Bingtuan Gao
author_sort Peng Zeng
title Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
title_short Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
title_full Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
title_fullStr Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
title_full_unstemmed Reliable Robot-Flock-Based Monitoring System Design via A Mobile Wireless Sensor Network
title_sort reliable robot-flock-based monitoring system design via a mobile wireless sensor network
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description The reliable distributed monitoring system provides the real-time video observation from the power cable tunnels when the preinstalled communication system is disabled in an emergency. The spherical robotic prototypes are designed as the sensor node based on the analysis of the robot dynamic model. A novel self-constructed mobile wireless sensor network (MWSN) is proposed to realize the communication and positioning functions through the fusion of the Ad-Hoc and ultra-wideband (UWB) approaches. The Ad-Hoc network consists of multiple robot nodes as sensor carriers and relay stations to transmit large amounts of data from the accident scene to the monitoring terminal. The UWB network consists of UWB tags and bases on each node and implements the leader-follower (LF) strategy to create the robot formation. In order to maximize the monitoring area and maintain the reliability of the network, the traditional LF strategy is optimized based on the <italic>N-X</italic> algorithm subjected to the constraints of node number, Ad-Hoc communication and UWB positioning range, and the power tunnel boundaries. A self-constructed MWSN consisting of five robotic nodes (<inline-formula> <tex-math notation="LaTeX">$N=5$ </tex-math></inline-formula>) is capable of covering 40 m of power cable tunnel, when the value of <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> is selected as 3. The network failure probability reduces from 73.5&#x0025; (<inline-formula> <tex-math notation="LaTeX">$X=0$ </tex-math></inline-formula>) to 0.2&#x0025; (<inline-formula> <tex-math notation="LaTeX">$X=3$ </tex-math></inline-formula>) when the malfunction probability of sensor node is 23.3&#x0025; due to the accident condition in the tunnel. Finally, the simulation and experimental results show that the optimized LF algorithm increases 20.2&#x0025; coverage of the network in the curve formation. The network transmits a monitoring video streaming with a <inline-formula> <tex-math notation="LaTeX">$320\times240$ </tex-math></inline-formula> pixel resolution and a delay less than 150 ms. The real-time video observation from the accident scene is significant to formulate the emergency countermeasure and investigate the direct cause of the accident.
topic Power cable tunnel
monitoring system
spherical robot
mobile wireless sensor network
leader-follower strategy
formation optimization
url https://ieeexplore.ieee.org/document/9382970/
work_keys_str_mv AT pengzeng reliablerobotflockbasedmonitoringsystemdesignviaamobilewirelesssensornetwork
AT jiahonghe reliablerobotflockbasedmonitoringsystemdesignviaamobilewirelesssensornetwork
AT bingtuangao reliablerobotflockbasedmonitoringsystemdesignviaamobilewirelesssensornetwork
_version_ 1724178766751596544