Nicotine and its Downstream Metabolites in Maternal and Cord Sera: Biomarkers of Prenatal Smoking Exposure Associated with Offspring DNA Methylation

Nicotine is a major constituent of cigarette smoke. Its primary metabolite in maternal and cord sera, cotinine, is considered a biomarker of prenatal smoking. Nicotine and cotinine half-lives are decreased in pregnancy due to their increased rate of metabolism and conversion to downstream metabolite...

Full description

Bibliographic Details
Main Authors: Parnian Kheirkhah Rahimabad, Thilani M. Anthony, A. Daniel Jones, Shakiba Eslamimehr, Nandini Mukherjee, Susan Ewart, John W. Holloway, Hasan Arshad, Sarah Commodore, Wilfried Karmaus
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:https://www.mdpi.com/1660-4601/17/24/9552
Description
Summary:Nicotine is a major constituent of cigarette smoke. Its primary metabolite in maternal and cord sera, cotinine, is considered a biomarker of prenatal smoking. Nicotine and cotinine half-lives are decreased in pregnancy due to their increased rate of metabolism and conversion to downstream metabolites such as norcotinine and 3-hydroxycotinine. Hence, downstream metabolites of nicotine may provide informative biomarkers of prenatal smoking. In this study of three generations (F0-mothers, F1-offspring who became mothers, and F2-offspring), we present a biochemical assessment of prenatal smoking exposure based on maternal and cord sera levels of nicotine, cotinine, norcotinine, and 3-hydroxycotinine. As potential markers of early effects of prenatal smoking, associations with differential DNA methylation (DNAm) in the F1- and F2-offspring were assessed. All metabolites in maternal and cord sera were associated with self-reported prenatal smoking, except for nicotine. We compared maternal self-report of smoking in pregnancy to biochemical evidence of prenatal smoking exposure. Self-report of F0-mothers of F1 in 1989–1990 had more accuracy identifying prenatal smoking related to maternal metabolites in maternal serum (sensitivity = 94.6%, specificity = 86.9%) compared to self-reports of F1-mothers of F2 (2010–2016) associated with cord serum markers (sensitivity = 66.7%, specificity = 78.8%). Nicotine levels in sera showed no significant association with any DNAm site previously linked to maternal smoking. Its downstream metabolites, however, were associated with DNAm sites located on the <i>MYO1G</i>, <i>AHRR</i>, and <i>GFI1</i> genes. In conclusion, cotinine, norcotinine, and 3-hydroxycotinine in maternal and cord sera provide informative biomarkers and should be considered when assessing prenatal smoking. The observed association of offspring DNAm with metabolites, except for nicotine, may imply that the toxic effects of prenatal nicotine exposure are exerted by downstream metabolites, rather than nicotine. If differential DNA methylation on the <i>MYO1G</i>, <i>AHRR</i>, and <i>GFI1</i> genes transmit adverse effects of prenatal nicotine exposure to the child, there is a need to investigate whether preventing changes in DNA methylation by reducing the metabolic rate of nicotine and conversion to harmful metabolites may protect exposed children.
ISSN:1661-7827
1660-4601