PuVAE: A Variational Autoencoder to Purify Adversarial Examples
Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to ad...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8824108/ |