Maximum likelihood estimation for Gaussian process with nonlinear drift

We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct the maximum likelihood estimators of the drift parameter θ based on discrete and continuous observations of the process X and pro...

Full description

Bibliographic Details
Main Authors: Yuliya Mishura, Kostiantyn Ralchenko, Sergiy Shklyar
Format: Article
Language:English
Published: Vilnius University Press 2018-02-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13356