Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering

The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in...

Full description

Bibliographic Details
Main Authors: Laurens Raes, Melissa Pille, Aranit Harizaj, Glenn Goetgeluk, Jelter Van Hoeck, Stephan Stremersch, Juan C. Fraire, Toon Brans, Olivier Gerrit de Jong, Roel Maas-Bakker, Enrico Mastrobattista, Pieter Vader, Stefaan C. De Smedt, Bart Vandekerckhove, Koen Raemdonck, Kevin Braeckmans
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Molecular Therapy: Nucleic Acids
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2162253121002080
id doaj-d83a80530b204562bf8701e1aa7bfddd
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Laurens Raes
Melissa Pille
Aranit Harizaj
Glenn Goetgeluk
Jelter Van Hoeck
Stephan Stremersch
Juan C. Fraire
Toon Brans
Olivier Gerrit de Jong
Roel Maas-Bakker
Enrico Mastrobattista
Pieter Vader
Stefaan C. De Smedt
Bart Vandekerckhove
Koen Raemdonck
Kevin Braeckmans
spellingShingle Laurens Raes
Melissa Pille
Aranit Harizaj
Glenn Goetgeluk
Jelter Van Hoeck
Stephan Stremersch
Juan C. Fraire
Toon Brans
Olivier Gerrit de Jong
Roel Maas-Bakker
Enrico Mastrobattista
Pieter Vader
Stefaan C. De Smedt
Bart Vandekerckhove
Koen Raemdonck
Kevin Braeckmans
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
Molecular Therapy: Nucleic Acids
CRISPR-Cas9
gene editing
T cells
stem cells
photoporation
intracellular delivery
author_facet Laurens Raes
Melissa Pille
Aranit Harizaj
Glenn Goetgeluk
Jelter Van Hoeck
Stephan Stremersch
Juan C. Fraire
Toon Brans
Olivier Gerrit de Jong
Roel Maas-Bakker
Enrico Mastrobattista
Pieter Vader
Stefaan C. De Smedt
Bart Vandekerckhove
Koen Raemdonck
Kevin Braeckmans
author_sort Laurens Raes
title Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
title_short Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
title_full Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
title_fullStr Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
title_full_unstemmed Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
title_sort cas9 rnp transfection by vapor nanobubble photoporation for ex vivo cell engineering
publisher Elsevier
series Molecular Therapy: Nucleic Acids
issn 2162-2531
publishDate 2021-09-01
description The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.
topic CRISPR-Cas9
gene editing
T cells
stem cells
photoporation
intracellular delivery
url http://www.sciencedirect.com/science/article/pii/S2162253121002080
work_keys_str_mv AT laurensraes cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT melissapille cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT aranitharizaj cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT glenngoetgeluk cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT jeltervanhoeck cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT stephanstremersch cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT juancfraire cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT toonbrans cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT oliviergerritdejong cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT roelmaasbakker cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT enricomastrobattista cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT pietervader cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT stefaancdesmedt cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT bartvandekerckhove cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT koenraemdonck cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
AT kevinbraeckmans cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering
_version_ 1717376341718859776
spelling doaj-d83a80530b204562bf8701e1aa7bfddd2021-09-19T04:56:58ZengElsevierMolecular Therapy: Nucleic Acids2162-25312021-09-0125696707Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineeringLaurens Raes0Melissa Pille1Aranit Harizaj2Glenn Goetgeluk3Jelter Van Hoeck4Stephan Stremersch5Juan C. Fraire6Toon Brans7Olivier Gerrit de Jong8Roel Maas-Bakker9Enrico Mastrobattista10Pieter Vader11Stefaan C. De Smedt12Bart Vandekerckhove13Koen Raemdonck14Kevin Braeckmans15Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsCDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the NetherlandsLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Corresponding author: Kevin Braeckmans, Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.E-mail:The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.http://www.sciencedirect.com/science/article/pii/S2162253121002080CRISPR-Cas9gene editingT cellsstem cellsphotoporationintracellular delivery