Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1

Cytosolic Cu/Zn superoxide dismutase (SOD1) is a ubiquitous small cytosolic metalloenzyme that catalyzes the conversion of superoxide anion to hydrogen peroxide (H2O2). Mutations in the SOD1 gene cause a familial form of amyotrophic lateral sclerosis (fALS). The mechanism by which mutant SOD1s cause...

Full description

Bibliographic Details
Main Authors: Dick Jaarsma, Elize D. Haasdijk, J.A.C. Grashorn, Richard Hawkins, Wim van Duijn, Hein W. Verspaget, Jacqueline London, Jan C. Holstege
Format: Article
Language:English
Published: Elsevier 2000-12-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996100902997
id doaj-db05d241e2cf4ff69c6dc01d193fb531
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Dick Jaarsma
Elize D. Haasdijk
J.A.C. Grashorn
Richard Hawkins
Wim van Duijn
Hein W. Verspaget
Jacqueline London
Jan C. Holstege
spellingShingle Dick Jaarsma
Elize D. Haasdijk
J.A.C. Grashorn
Richard Hawkins
Wim van Duijn
Hein W. Verspaget
Jacqueline London
Jan C. Holstege
Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
Neurobiology of Disease
oxidative stress
amyotrophic lateral sclerosis
electron microscopy
spinal cord
neurodegenerative disease
aging.
author_facet Dick Jaarsma
Elize D. Haasdijk
J.A.C. Grashorn
Richard Hawkins
Wim van Duijn
Hein W. Verspaget
Jacqueline London
Jan C. Holstege
author_sort Dick Jaarsma
title Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
title_short Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
title_full Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
title_fullStr Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
title_full_unstemmed Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1
title_sort human cu/zn superoxide dismutase (sod1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant sod1
publisher Elsevier
series Neurobiology of Disease
issn 1095-953X
publishDate 2000-12-01
description Cytosolic Cu/Zn superoxide dismutase (SOD1) is a ubiquitous small cytosolic metalloenzyme that catalyzes the conversion of superoxide anion to hydrogen peroxide (H2O2). Mutations in the SOD1 gene cause a familial form of amyotrophic lateral sclerosis (fALS). The mechanism by which mutant SOD1s causes ALS is not understood. Transgenic mice expressing multiple copies of fALS-mutant SOD1s develop an ALS-like motoneuron disease resembling ALS. Here we report that transgenic mice expressing a high concentration of wild-type human SOD1 (hSOD1WT) develop an array of neurodegenerative changes consisting of (1) swelling and vacuolization of mitochondria, predominantly in axons in the spinal cord, brain stem, and subiculum; (2) axonal degeneration in a number of long fiber tracts, predominantly the spinocerebellar tracts; and (3) at 2 years of age, a moderate loss of spinal motoneurons. Parallel to the development of neurodegenerative changes, hSOD1WT mice also develop mild motor abnormalities. Interestingly, mitochondrial vacuolization was associated with accumulation of hSOD1 immunoreactivity, suggesting that the development of mitochondrial pathology is associated with disturbed SOD1 turnover. In this study we also crossed hSOD1WT mice with a line of fALS-mutant SOD1 mice (hSOD1G93A) to generate “double” transgenic mice that express high levels of both wild-type and G93A mutant hSOD1. The “double” transgenic mice show accelerated motoneuron death, earlier onset of paresis, and earlier death as compared with hSOD1G93A littermates. Thus in vivo expression of high levels of wild-type hSOD1 is not only harmful to neurons in itself, but also increases or facilitates the deleterious action of a fALS-mutant SOD1. Our data indicate that it is important for motoneurons to control the SOD1 concentration throughout their processes, and that events that lead to improper synthesis, transport, or breakdown of SOD1 causing its accumulation are potentially dangerous.
topic oxidative stress
amyotrophic lateral sclerosis
electron microscopy
spinal cord
neurodegenerative disease
aging.
url http://www.sciencedirect.com/science/article/pii/S0969996100902997
work_keys_str_mv AT dickjaarsma humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT elizedhaasdijk humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT jacgrashorn humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT richardhawkins humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT wimvanduijn humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT heinwverspaget humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT jacquelinelondon humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
AT jancholstege humancuznsuperoxidedismutasesod1overexpressioninmicecausesmitochondrialvacuolizationaxonaldegenerationandprematuremotoneurondeathandacceleratesmotoneurondiseaseinmiceexpressingafamilialamyotrophiclateralsclerosismutantsod1
_version_ 1724212285162913792
spelling doaj-db05d241e2cf4ff69c6dc01d193fb5312021-03-20T04:46:27ZengElsevierNeurobiology of Disease1095-953X2000-12-0176623643Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1Dick Jaarsma0Elize D. Haasdijk1J.A.C. Grashorn2Richard Hawkins3Wim van Duijn4Hein W. Verspaget5Jacqueline London6Jan C. Holstege7Department of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceDepartment of Anatomy, Erasmus University, Rotterdam, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands; URA 1335 Hopital Necker, Paris, FranceCytosolic Cu/Zn superoxide dismutase (SOD1) is a ubiquitous small cytosolic metalloenzyme that catalyzes the conversion of superoxide anion to hydrogen peroxide (H2O2). Mutations in the SOD1 gene cause a familial form of amyotrophic lateral sclerosis (fALS). The mechanism by which mutant SOD1s causes ALS is not understood. Transgenic mice expressing multiple copies of fALS-mutant SOD1s develop an ALS-like motoneuron disease resembling ALS. Here we report that transgenic mice expressing a high concentration of wild-type human SOD1 (hSOD1WT) develop an array of neurodegenerative changes consisting of (1) swelling and vacuolization of mitochondria, predominantly in axons in the spinal cord, brain stem, and subiculum; (2) axonal degeneration in a number of long fiber tracts, predominantly the spinocerebellar tracts; and (3) at 2 years of age, a moderate loss of spinal motoneurons. Parallel to the development of neurodegenerative changes, hSOD1WT mice also develop mild motor abnormalities. Interestingly, mitochondrial vacuolization was associated with accumulation of hSOD1 immunoreactivity, suggesting that the development of mitochondrial pathology is associated with disturbed SOD1 turnover. In this study we also crossed hSOD1WT mice with a line of fALS-mutant SOD1 mice (hSOD1G93A) to generate “double” transgenic mice that express high levels of both wild-type and G93A mutant hSOD1. The “double” transgenic mice show accelerated motoneuron death, earlier onset of paresis, and earlier death as compared with hSOD1G93A littermates. Thus in vivo expression of high levels of wild-type hSOD1 is not only harmful to neurons in itself, but also increases or facilitates the deleterious action of a fALS-mutant SOD1. Our data indicate that it is important for motoneurons to control the SOD1 concentration throughout their processes, and that events that lead to improper synthesis, transport, or breakdown of SOD1 causing its accumulation are potentially dangerous.http://www.sciencedirect.com/science/article/pii/S0969996100902997oxidative stressamyotrophic lateral sclerosiselectron microscopyspinal cordneurodegenerative diseaseaging.