Nodal solutions for singular second-order boundary-value problems
We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2014-07-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2014/156/abstr.html |