Nodal solutions for singular second-order boundary-value problems
We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2014-07-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2014/156/abstr.html |
id |
doaj-db509e0184a0436ea84d13ca0dfcfec7 |
---|---|
record_format |
Article |
spelling |
doaj-db509e0184a0436ea84d13ca0dfcfec72020-11-24T23:52:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912014-07-012014156,139Nodal solutions for singular second-order boundary-value problemsAbdelhamid Benmezai0Wassila Esserhane1Johnny Henderson2 USTHB, Algiers, Algeria Graduate School of Stats. and Appl. Economics, Algeria Baylor University, Waco, TX, USA We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p(t)u'(t)=0, }$$ where $\xi ,\eta $, $a,b,c,d$ are real numbers with $\xi <\eta$, $a,b,c,d\geq 0$ , $p:( \xi ,\eta ) \to [ 0,+\infty) $ is a measurable function with $\int_{\xi }^{\eta }1/p(s)\,ds<\infty $ and $f:[ \xi ,\eta ] \times [ 0,+\infty) \to [ 0,+\infty ) $ is a Caratheodory function.http://ejde.math.txstate.edu/Volumes/2014/156/abstr.htmlSingular second-order BVPsnodal solutionsglobal bifurcation theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdelhamid Benmezai Wassila Esserhane Johnny Henderson |
spellingShingle |
Abdelhamid Benmezai Wassila Esserhane Johnny Henderson Nodal solutions for singular second-order boundary-value problems Electronic Journal of Differential Equations Singular second-order BVPs nodal solutions global bifurcation theorem |
author_facet |
Abdelhamid Benmezai Wassila Esserhane Johnny Henderson |
author_sort |
Abdelhamid Benmezai |
title |
Nodal solutions for singular second-order boundary-value problems |
title_short |
Nodal solutions for singular second-order boundary-value problems |
title_full |
Nodal solutions for singular second-order boundary-value problems |
title_fullStr |
Nodal solutions for singular second-order boundary-value problems |
title_full_unstemmed |
Nodal solutions for singular second-order boundary-value problems |
title_sort |
nodal solutions for singular second-order boundary-value problems |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2014-07-01 |
description |
We use a global bifurcation theorem to prove the existence of
nodal solutions to the singular second-order two-point boundary-value
problem
$$\displaylines{
-( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr
au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr
cu(\eta )+d\lim_{t\to\eta} p(t)u'(t)=0,
}$$
where $\xi ,\eta $, $a,b,c,d$ are real numbers with $\xi <\eta$,
$a,b,c,d\geq 0$ , $p:( \xi ,\eta ) \to [ 0,+\infty) $ is a measurable
function with $\int_{\xi }^{\eta }1/p(s)\,ds<\infty $ and
$f:[ \xi ,\eta ] \times [ 0,+\infty) \to [ 0,+\infty ) $ is a Caratheodory
function. |
topic |
Singular second-order BVPs nodal solutions global bifurcation theorem |
url |
http://ejde.math.txstate.edu/Volumes/2014/156/abstr.html |
work_keys_str_mv |
AT abdelhamidbenmezai nodalsolutionsforsingularsecondorderboundaryvalueproblems AT wassilaesserhane nodalsolutionsforsingularsecondorderboundaryvalueproblems AT johnnyhenderson nodalsolutionsforsingularsecondorderboundaryvalueproblems |
_version_ |
1725472734332321792 |