Nodal solutions for singular second-order boundary-value problems

We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p...

Full description

Bibliographic Details
Main Authors: Abdelhamid Benmezai, Wassila Esserhane, Johnny Henderson
Format: Article
Language:English
Published: Texas State University 2014-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/156/abstr.html
id doaj-db509e0184a0436ea84d13ca0dfcfec7
record_format Article
spelling doaj-db509e0184a0436ea84d13ca0dfcfec72020-11-24T23:52:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912014-07-012014156,139Nodal solutions for singular second-order boundary-value problemsAbdelhamid Benmezai0Wassila Esserhane1Johnny Henderson2 USTHB, Algiers, Algeria Graduate School of Stats. and Appl. Economics, Algeria Baylor University, Waco, TX, USA We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p(t)u'(t)=0, }$$ where $\xi ,\eta $, $a,b,c,d$ are real numbers with $\xi <\eta$, $a,b,c,d\geq 0$ , $p:( \xi ,\eta ) \to [ 0,+\infty) $ is a measurable function with $\int_{\xi }^{\eta }1/p(s)\,ds<\infty $ and $f:[ \xi ,\eta ] \times [ 0,+\infty) \to [ 0,+\infty ) $ is a Caratheodory function.http://ejde.math.txstate.edu/Volumes/2014/156/abstr.htmlSingular second-order BVPsnodal solutionsglobal bifurcation theorem
collection DOAJ
language English
format Article
sources DOAJ
author Abdelhamid Benmezai
Wassila Esserhane
Johnny Henderson
spellingShingle Abdelhamid Benmezai
Wassila Esserhane
Johnny Henderson
Nodal solutions for singular second-order boundary-value problems
Electronic Journal of Differential Equations
Singular second-order BVPs
nodal solutions
global bifurcation theorem
author_facet Abdelhamid Benmezai
Wassila Esserhane
Johnny Henderson
author_sort Abdelhamid Benmezai
title Nodal solutions for singular second-order boundary-value problems
title_short Nodal solutions for singular second-order boundary-value problems
title_full Nodal solutions for singular second-order boundary-value problems
title_fullStr Nodal solutions for singular second-order boundary-value problems
title_full_unstemmed Nodal solutions for singular second-order boundary-value problems
title_sort nodal solutions for singular second-order boundary-value problems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2014-07-01
description We use a global bifurcation theorem to prove the existence of nodal solutions to the singular second-order two-point boundary-value problem $$\displaylines{ -( pu') '(t)=f(t,u(t))\quad t\in ( \xi ,\eta) , \cr au(\xi )-b\lim_{t\to\xi} p(t)u'(t)=0, \cr cu(\eta )+d\lim_{t\to\eta} p(t)u'(t)=0, }$$ where $\xi ,\eta $, $a,b,c,d$ are real numbers with $\xi <\eta$, $a,b,c,d\geq 0$ , $p:( \xi ,\eta ) \to [ 0,+\infty) $ is a measurable function with $\int_{\xi }^{\eta }1/p(s)\,ds<\infty $ and $f:[ \xi ,\eta ] \times [ 0,+\infty) \to [ 0,+\infty ) $ is a Caratheodory function.
topic Singular second-order BVPs
nodal solutions
global bifurcation theorem
url http://ejde.math.txstate.edu/Volumes/2014/156/abstr.html
work_keys_str_mv AT abdelhamidbenmezai nodalsolutionsforsingularsecondorderboundaryvalueproblems
AT wassilaesserhane nodalsolutionsforsingularsecondorderboundaryvalueproblems
AT johnnyhenderson nodalsolutionsforsingularsecondorderboundaryvalueproblems
_version_ 1725472734332321792