Clustering for Probability Density Functions by New k-Medoids Method
This paper proposes a novel and efficient clustering algorithm for probability density functions based on k-medoids. Further, a scheme used for selecting the powerful initial medoids is suggested, which speeds up the computational time significantly. Also, a general proof for convergence of the prop...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Scientific Programming |
Online Access: | http://dx.doi.org/10.1155/2018/2764016 |