Skip to content
Open Access
  • Home
  • Collections
    • High Impact Articles
    • Jawi Collection
    • Malay Medicine
    • Forensic
  • Search Options
    • UiTM Open Access
    • Search by UiTM Scopus
    • Advanced Search
    • Search by Category
  • Discovery Service
    • Sources
    • UiTM Journals
    • List UiTM Journal in IR
    • Statistic
  • About
    • Open Access
    • Creative Commons Licenses
    • COKI | Malaysia Open Access
    • User Guide
    • Contact Us
    • Search Tips
    • FAQs
Advanced
  • On pseudocompact topological B...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
On pseudocompact topological Brandt λ0-extensions
of semitopological monoids

On pseudocompact topological Brandt λ0-extensions of semitopological monoids

Bibliographic Details
Main Authors: Gutik Oleg, Pavlyk Kateryna
Format: Article
Language:English
Published: De Gruyter 2013-12-01
Series:Topological Algebra and its Applications
Subjects:
semitopological semigroup
stone-cˇ ech compactification
bohr compactification
pseudocompact space
countably pracompact space
countably compact space
semigroup extension
category
full functor
representative functor
22a15
54h15
Online Access:https://doi.org/10.2478/taa-2013-0007
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.2478/taa-2013-0007

Similar Items

  • On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
    by: O.V. Gutik, et al.
    Published: (2019-12-01)
  • On locally compact semitopological O-bisimple inverse ω-semigroups
    by: Gutik Oleg
    Published: (2018-04-01)
  • Maximal pseudocompact spaces and the Preiss-Simon property
    by: Alas Ofelia, et al.
    Published: (2014-03-01)
  • F-n-resolvable spaces and compactifications
    by: Intissar Dahane, et al.
    Published: (2019-04-01)
  • Constructing the Banaschewski compactification through the functionally countable subalgebra of $C(X)$
    by: Mehdi Parsinia
    Published: (2021-01-01)

© 2020 | Services hosted by the Perpustakaan Tun Abdul Razak, | Universiti Teknologi MARA | Disclaimer


Loading...