Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types

Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.

Bibliographic Details
Main Authors: Vincent van Unen, Thomas Höllt, Nicola Pezzotti, Na Li, Marcel J. T. Reinders, Elmar Eisemann, Frits Koning, Anna Vilanova, Boudewijn P. F. Lelieveldt
Format: Article
Language:English
Published: Nature Publishing Group 2017-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-017-01689-9