A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary CaVβ subunits
Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2019-08-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/49253 |