Systemic expression of Alu RNA in patients with geographic atrophy secondary to age-related macular degeneration.

Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is characterized by irreversible loss of macular retinal tissue and retinal pigment epithelium (RPE) cells. Several studies have revealed that accumulation of Alu RNA in RPE cell causes RPE cell degeneration in AMD. In the p...

Full description

Bibliographic Details
Main Authors: Hiroyuki Yoshida, Tokiyoshi Matsushita, Erika Kimura, Yukie Fujita, Robert Keany, Toshihiro Ikeda, Masanao Toshimori, Takahiro Imanaka, Masatsugu Nakamura
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0220887
Description
Summary:Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is characterized by irreversible loss of macular retinal tissue and retinal pigment epithelium (RPE) cells. Several studies have revealed that accumulation of Alu RNA in RPE cell causes RPE cell degeneration in AMD. In the present study, systemic Alu RNA expression levels were determined in 33 subjects with GA and 40 control subjects using a proprietary Alu RNA quantification method. It was observed that the expression level of Alu RNA was not significantly different between GA and Control groups (median = 21.3 in both GA and Control groups, P = 0.251). In addition, the systemic level of Alu RNA was not associated with subject characteristics, such as GA lesion size and SNP profiles of complement factors associated with increased risk of AMD. In conclusion, the usability of systemic Alu RNA expression level as a biomarker of GA secondary to AMD could not be established in this study.
ISSN:1932-6203