Robust Kernel Principal Component Analysis With ℓ<sub>2,1</sub>-Regularized Loss Minimization
Principal component analysis (PCA) is a widely used unsupervised method for dimensionality reduction. The kernelized version is called kernel principal component analysis (KPCA), which can capture the nonlinear data structure. KPCA is derived from the Gram matrix, which is not robust when outliers e...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9078681/ |