Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
We show how complexity theory can be introduced in machine learning to help bring together apparently disparate areas of current research. We show that this model-driven approach may require less training data and can potentially be more generalizable as it shows greater resilience to random attacks...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-01-01
|
Series: | Frontiers in Artificial Intelligence |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full |