Positive definite estimation of large covariance matrix using generalized nonconvex penalties
This paper addresses the issue of large covariance matrix estimation in a high-dimensional statistical analysis. Recently, improved iterative algorithms with positive-definite guarantee have been developed. However, these algorithms cannot be directly extended to use a nonconvex penalty for sparsity...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2016-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7526330/ |