Microstructure and Grain Orientation Evolution in SnPb/SnAgCu Interconnects Under Electrical Current Stressing at Cryogenic Temperature

Electromigration was characterized at the cathode Cu/solder interface&#8212;without the effect of Joule heating&#8212;by employing scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analyses. Rapid (Cu<sub>x</sub>,Ni<sub>1&#8722;x</sub>...

Full description

Bibliographic Details
Main Authors: Xing Fu, Yunfei En, Bin Zhou, Si Chen, Yun Huang, Xiaoqi He, Hongtao Chen, Ruohe Yao
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Materials
Subjects:
IMC
Online Access:https://www.mdpi.com/1996-1944/12/10/1593
Description
Summary:Electromigration was characterized at the cathode Cu/solder interface&#8212;without the effect of Joule heating&#8212;by employing scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analyses. Rapid (Cu<sub>x</sub>,Ni<sub>1&#8722;x</sub>)<sub>6</sub>Sn<sub>5</sub> intermetallic compound (IMC) growth was observed at the anomalous region at the cathode end due to the effect of current crowding. The abnormal isotropic diffusion and parallel distribution of Pb were characterized in an ultra-low temperature environment in a monocrystalline structure stressed at &#8722;196 &#176;C. The interesting results were attributed to crystallographic transformation due to the simultaneous effect of cryogenic and electrical stressing. The diffusion behavior of Pb atoms in face-centered cubic lattices performed isomorphism. As a result, Pb atoms of the bump gathered at the high-energy grain boundaries by diffusing through the face-centered cubic lattices around the long grain boundary, eventually forming a long-range distribution and accumulation of Pb elements. Our study may provide understanding of cryogenic electromigration evolution of the Cu/solder interface and provide visual data for abnormal lattice transformation at the current stressing.
ISSN:1996-1944