Effects of Powder Vibration and Time Consolidation on Soft and Hard Wheat Flour Properties

Consistency and reliable flow are of great concern during the handling and processing of flour. In this study, wheat flour was consolidated by normal stress and vibration, and rheological factors including bulk solid compressibility, Warren-Spring cohesion strength, permeability, and wall friction w...

Full description

Bibliographic Details
Main Authors: Yumeng Zhao, Poonam Phalswal, Abhishek Shetty, R.P. Kingsly Ambrose
Format: Article
Language:English
Published: Hosokawa Powder Technology Foundation 2020-04-01
Series:KONA Powder and Particle Journal
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/kona/38/0/38_2021007/_html/-char/en
Description
Summary:Consistency and reliable flow are of great concern during the handling and processing of flour. In this study, wheat flour was consolidated by normal stress and vibration, and rheological factors including bulk solid compressibility, Warren-Spring cohesion strength, permeability, and wall friction were evaluated. Soft red winter (SRW) and hard red spring (HRS) wheat flours were vibrated for 5 and 10 minutes and compressed under 10 and 20 kPa for 12 and 24 h. After vibration, wall friction increased from 10.87° to 14.13° for SRW flour and decreased from 11.00° to 7.10° for HRS flour, and the permeability decreased for both the flours. Consolidation time and stress had a significant effect (P < 0.05) on wall friction and compressibility. The HRS Carr index increased from 25.77 to 38.48 when consolidated under 20 kPa for 24 hours, but the SRW Carr index decreased slightly from 46.60 to 44.24. The SRW flour permeability decreased significantly (P < 0.05) when compression pressure was increased from 10 to 20 kPa. while HRS permeability was less affected by consolidation. The consolidation and vibration effects on bulk flour properties differed likely due to inherent differences in the composition and hardness of HRS and SRW.
ISSN:0288-4534
2187-5537