Existence of positive solutions for Kirchhoff problems

We study problems for the Kirchhoff equation $$\displaylines{ -\Big(a+b\int_{\Omega}|\nabla u|^2dx\Big)\Delta u =\nu u^3+ Q(x)u^{q},\quad \text{in }\Omega, \cr u=0, \quad \text{on }\partial\Omega, }$$ where $\Omega\subset \mathbb{R}^3$ is a bounded domain, $a,b\geq0$ and $a+b>0$, $\nu>...

Full description

Bibliographic Details
Main Authors: Jia-Feng Liao, Peng Zhang, Xing-Ping Wu
Format: Article
Language:English
Published: Texas State University 2015-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/280/abstr.html