Existence of positive solutions for Kirchhoff problems
We study problems for the Kirchhoff equation $$\displaylines{ -\Big(a+b\int_{\Omega}|\nabla u|^2dx\Big)\Delta u =\nu u^3+ Q(x)u^{q},\quad \text{in }\Omega, \cr u=0, \quad \text{on }\partial\Omega, }$$ where $\Omega\subset \mathbb{R}^3$ is a bounded domain, $a,b\geq0$ and $a+b>0$, $\nu>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/280/abstr.html |