Liouville-type theorems for stable solutions of singular quasilinear elliptic equations in R^N

We prove a Liouville-type theorem for stable solution of the singular quasilinear elliptic equations $$\displaylines{ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)|u|^{q-1}u, \quad \text{in } \mathbb{R}^N, \cr -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)e^u, \quad \text{in } \math...

Full description

Bibliographic Details
Main Authors: Caisheng Chen, Hongxue Song, Hongwei Yang
Format: Article
Language:English
Published: Texas State University 2018-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/81/abstr.html