Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric

<p>Abstract</p> <p>Background</p> <p>Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an impor...

Full description

Bibliographic Details
Main Authors: Janssen Katherine T, Dietz Joel A, Li Yan, Schlamp Cassandra L, Nickells Robert W
Format: Article
Language:English
Published: BMC 2006-10-01
Series:BMC Neuroscience
Online Access:http://www.biomedcentral.com/1471-2202/7/66
id doaj-fa982353724147d489aacfbcdc35be07
record_format Article
spelling doaj-fa982353724147d489aacfbcdc35be072020-11-25T00:05:00ZengBMCBMC Neuroscience1471-22022006-10-01716610.1186/1471-2202-7-66Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetricJanssen Katherine TDietz Joel ALi YanSchlamp Cassandra LNickells Robert W<p>Abstract</p> <p>Background</p> <p>Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the βGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice.</p> <p>Results</p> <p>Optic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of βGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal.</p> <p>Conclusion</p> <p>A comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is to the axons in the optic nerve, followed by the subsequent death of the ganglion cell soma.</p> http://www.biomedcentral.com/1471-2202/7/66
collection DOAJ
language English
format Article
sources DOAJ
author Janssen Katherine T
Dietz Joel A
Li Yan
Schlamp Cassandra L
Nickells Robert W
spellingShingle Janssen Katherine T
Dietz Joel A
Li Yan
Schlamp Cassandra L
Nickells Robert W
Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
BMC Neuroscience
author_facet Janssen Katherine T
Dietz Joel A
Li Yan
Schlamp Cassandra L
Nickells Robert W
author_sort Janssen Katherine T
title Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
title_short Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
title_full Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
title_fullStr Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
title_full_unstemmed Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric
title_sort progressive ganglion cell loss and optic nerve degeneration in dba/2j mice is variable and asymmetric
publisher BMC
series BMC Neuroscience
issn 1471-2202
publishDate 2006-10-01
description <p>Abstract</p> <p>Background</p> <p>Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the βGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice.</p> <p>Results</p> <p>Optic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of βGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal.</p> <p>Conclusion</p> <p>A comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is to the axons in the optic nerve, followed by the subsequent death of the ganglion cell soma.</p>
url http://www.biomedcentral.com/1471-2202/7/66
work_keys_str_mv AT janssenkatherinet progressiveganglioncelllossandopticnervedegenerationindba2jmiceisvariableandasymmetric
AT dietzjoela progressiveganglioncelllossandopticnervedegenerationindba2jmiceisvariableandasymmetric
AT liyan progressiveganglioncelllossandopticnervedegenerationindba2jmiceisvariableandasymmetric
AT schlampcassandral progressiveganglioncelllossandopticnervedegenerationindba2jmiceisvariableandasymmetric
AT nickellsrobertw progressiveganglioncelllossandopticnervedegenerationindba2jmiceisvariableandasymmetric
_version_ 1725426859080941568