The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper
The ongoing development of microelectromechanical systems (MEMS) over the past decades has made possible the achievement of high-precision micromanipulation within the micromanufacturing, microassembly and biomedical fields. This paper presents different design variants of a horizontal electrotherma...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-07-01
|
Series: | Actuators |
Subjects: | |
Online Access: | http://www.mdpi.com/2076-0825/7/3/38 |
id |
doaj-fc1a96613ed84cc08f3207f08572335b |
---|---|
record_format |
Article |
spelling |
doaj-fc1a96613ed84cc08f3207f08572335b2020-11-24T20:50:19ZengMDPI AGActuators2076-08252018-07-01733810.3390/act7030038act7030038The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS MicrogripperMarija Cauchi0Ivan Grech1Bertram Mallia2Pierluigi Mollicone3Nicholas Sammut4Department of Mechanical Engineering, Faculty of Engineering, University of Malta, MSD 2080 Msida, MaltaDepartment of Microelectronics and Nanoelectronics, Faculty of Information and Communication Technology, University of Malta, MSD 2080 Msida, MaltaDepartment of Metallurgy and Materials Engineering, Faculty of Engineering, University of Malta, MSD 2080 Msida, MaltaDepartment of Mechanical Engineering, Faculty of Engineering, University of Malta, MSD 2080 Msida, MaltaDepartment of Microelectronics and Nanoelectronics, Faculty of Information and Communication Technology, University of Malta, MSD 2080 Msida, MaltaThe ongoing development of microelectromechanical systems (MEMS) over the past decades has made possible the achievement of high-precision micromanipulation within the micromanufacturing, microassembly and biomedical fields. This paper presents different design variants of a horizontal electrothermally actuated MEMS microgripper that are developed as microsystems to micromanipulate and study the deformability properties of human red blood cells (RBCs). The presented microgripper design variants are all based on the U-shape `hot and cold arm’ actuator configuration, and are fabricated using the commercially available Multi-User MEMS Processes (MUMPs®) that are produced by MEMSCAP, Inc. (Durham, NC, USA) and that include both surface micromachined (PolyMUMPs™) and silicon-on-insulator (SOIMUMPs™) MEMS fabrication technologies. The studied microgripper design variants have the same in-plane geometry, with their main differences arising from the thickness of the fabricated structures, the consequent air gap separation between the structure and the substrate surface, as well as the intrinsic nature of the silicon material used. These factors are all inherent characteristics of the specific fabrication technologies used. PolyMUMPs™ utilises polycrystalline silicon structures that are composed of two free-standing, independently stackable structural layers, enabling the user to achieve structure thicknesses of 1.5 μm, 2 μm and 3.5 μm, respectively, whereas SOIMUMPs™ utilises a 25 μm thick single crystal silicon structure having only one free-standing structural layer. The microgripper design variants are presented and compared in this work to investigate the effect of their differences on the temperature distribution and the achieved end-effector displacement. These design variants were analytically studied, as well as numerically modelled using finite element analysis where coupled electrothermomechanical simulations were carried out in CoventorWare® (Version 10, Coventor, Inc., Cary, NC, USA). Experimental results for the microgrippers’ actuation under atmospheric pressure were obtained via optical microscopy studies for the PolyMUMPs™ structures, and they were found to be conforming with the predictions of the analytical and numerical models. The focus of this work is to identify which one of the studied design variants best optimises the microgripper’s electrothermomechanical performance in terms of a sufficient lateral tip displacement, minimum out-of-plane displacement at the arm tips and good heat transfer to limit the temperature at the cell gripping zone, as required for the deformability study of RBCs.http://www.mdpi.com/2076-0825/7/3/38MEMS microgrippersmicromanipulationred blood cellselectrothermal actuationPolyMUMPs™SOIMUMPs™structure thicknessair gap thicknesspolysiliconsingle crystal silicon |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marija Cauchi Ivan Grech Bertram Mallia Pierluigi Mollicone Nicholas Sammut |
spellingShingle |
Marija Cauchi Ivan Grech Bertram Mallia Pierluigi Mollicone Nicholas Sammut The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper Actuators MEMS microgrippers micromanipulation red blood cells electrothermal actuation PolyMUMPs™ SOIMUMPs™ structure thickness air gap thickness polysilicon single crystal silicon |
author_facet |
Marija Cauchi Ivan Grech Bertram Mallia Pierluigi Mollicone Nicholas Sammut |
author_sort |
Marija Cauchi |
title |
The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper |
title_short |
The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper |
title_full |
The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper |
title_fullStr |
The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper |
title_full_unstemmed |
The Effects of Structure Thickness, Air Gap Thickness and Silicon Type on the Performance of a Horizontal Electrothermal MEMS Microgripper |
title_sort |
effects of structure thickness, air gap thickness and silicon type on the performance of a horizontal electrothermal mems microgripper |
publisher |
MDPI AG |
series |
Actuators |
issn |
2076-0825 |
publishDate |
2018-07-01 |
description |
The ongoing development of microelectromechanical systems (MEMS) over the past decades has made possible the achievement of high-precision micromanipulation within the micromanufacturing, microassembly and biomedical fields. This paper presents different design variants of a horizontal electrothermally actuated MEMS microgripper that are developed as microsystems to micromanipulate and study the deformability properties of human red blood cells (RBCs). The presented microgripper design variants are all based on the U-shape `hot and cold arm’ actuator configuration, and are fabricated using the commercially available Multi-User MEMS Processes (MUMPs®) that are produced by MEMSCAP, Inc. (Durham, NC, USA) and that include both surface micromachined (PolyMUMPs™) and silicon-on-insulator (SOIMUMPs™) MEMS fabrication technologies. The studied microgripper design variants have the same in-plane geometry, with their main differences arising from the thickness of the fabricated structures, the consequent air gap separation between the structure and the substrate surface, as well as the intrinsic nature of the silicon material used. These factors are all inherent characteristics of the specific fabrication technologies used. PolyMUMPs™ utilises polycrystalline silicon structures that are composed of two free-standing, independently stackable structural layers, enabling the user to achieve structure thicknesses of 1.5 μm, 2 μm and 3.5 μm, respectively, whereas SOIMUMPs™ utilises a 25 μm thick single crystal silicon structure having only one free-standing structural layer. The microgripper design variants are presented and compared in this work to investigate the effect of their differences on the temperature distribution and the achieved end-effector displacement. These design variants were analytically studied, as well as numerically modelled using finite element analysis where coupled electrothermomechanical simulations were carried out in CoventorWare® (Version 10, Coventor, Inc., Cary, NC, USA). Experimental results for the microgrippers’ actuation under atmospheric pressure were obtained via optical microscopy studies for the PolyMUMPs™ structures, and they were found to be conforming with the predictions of the analytical and numerical models. The focus of this work is to identify which one of the studied design variants best optimises the microgripper’s electrothermomechanical performance in terms of a sufficient lateral tip displacement, minimum out-of-plane displacement at the arm tips and good heat transfer to limit the temperature at the cell gripping zone, as required for the deformability study of RBCs. |
topic |
MEMS microgrippers micromanipulation red blood cells electrothermal actuation PolyMUMPs™ SOIMUMPs™ structure thickness air gap thickness polysilicon single crystal silicon |
url |
http://www.mdpi.com/2076-0825/7/3/38 |
work_keys_str_mv |
AT marijacauchi theeffectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT ivangrech theeffectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT bertrammallia theeffectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT pierluigimollicone theeffectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT nicholassammut theeffectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT marijacauchi effectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT ivangrech effectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT bertrammallia effectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT pierluigimollicone effectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper AT nicholassammut effectsofstructurethicknessairgapthicknessandsilicontypeontheperformanceofahorizontalelectrothermalmemsmicrogripper |
_version_ |
1716804021820325888 |