Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films
State-of-the-art techniques for the fabrication of compound semiconductors are mostly vacuum-based physical vapor or chemical vapor deposition processes. These vacuum-based techniques typically operate at high temperatures and normally require higher capital costs. Solution-based techniques offer o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-05-01
|
Series: | Processes |
Subjects: | |
Online Access: | http://www.mdpi.com/2227-9717/2/2/441 |
id |
doaj-fc1e1cf46f054fa088caa0f82e0ab385 |
---|---|
record_format |
Article |
spelling |
doaj-fc1e1cf46f054fa088caa0f82e0ab3852020-11-25T01:11:33ZengMDPI AGProcesses2227-97172014-05-012244146510.3390/pr2020441pr2020441Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin FilmsChang-Ho Choi0Brian K. Paul1Chih-Hung Chang2School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USAOregon Process Innovation Center/Microproduct Breakthrough Institute, Corvallis, OR 97330, USASchool of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USAState-of-the-art techniques for the fabrication of compound semiconductors are mostly vacuum-based physical vapor or chemical vapor deposition processes. These vacuum-based techniques typically operate at high temperatures and normally require higher capital costs. Solution-based techniques offer opportunities to fabricate compound semiconductors at lower temperatures and lower capital costs. Among many solution-based deposition processes, chemical bath deposition is an attractive technique for depositing semiconductor films, owing to its low temperature, low cost and large area deposition capability. Chemical bath deposition processes are mainly performed using batch reactors, where all reactants are fed into the reactor simultaneously and products are removed after the processing is finished. Consequently, reaction selectivity is difficult, which can lead to unwanted secondary reactions. Microreactor-assisted solution deposition processes can overcome this limitation by producing short-life molecular intermediates used for heterogeneous thin film synthesis and quenching the reaction prior to homogeneous reactions. In this paper, we present progress in the synthesis and deposition of semiconductor thin films with a focus on CdS using microreactor-assisted solution deposition and provide an overview of its prospect for scale-up.http://www.mdpi.com/2227-9717/2/2/441microreactorcontinuous flowsemiconductornanomaterialnanostructurethin filmsolution process |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chang-Ho Choi Brian K. Paul Chih-Hung Chang |
spellingShingle |
Chang-Ho Choi Brian K. Paul Chih-Hung Chang Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films Processes microreactor continuous flow semiconductor nanomaterial nanostructure thin film solution process |
author_facet |
Chang-Ho Choi Brian K. Paul Chih-Hung Chang |
author_sort |
Chang-Ho Choi |
title |
Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films |
title_short |
Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films |
title_full |
Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films |
title_fullStr |
Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films |
title_full_unstemmed |
Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films |
title_sort |
microreactor-assisted solution deposition for compound semiconductor thin films |
publisher |
MDPI AG |
series |
Processes |
issn |
2227-9717 |
publishDate |
2014-05-01 |
description |
State-of-the-art techniques for the fabrication of compound semiconductors are mostly vacuum-based physical vapor or chemical vapor deposition processes. These vacuum-based techniques typically operate at high temperatures and normally require higher capital costs. Solution-based techniques offer opportunities to fabricate compound semiconductors at lower temperatures and lower capital costs. Among many solution-based deposition processes, chemical bath deposition is an attractive technique for depositing semiconductor films, owing to its low temperature, low cost and large area deposition capability. Chemical bath deposition processes are mainly performed using batch reactors, where all reactants are fed into the reactor simultaneously and products are removed after the processing is finished. Consequently, reaction selectivity is difficult, which can lead to unwanted secondary reactions. Microreactor-assisted solution deposition processes can overcome this limitation by producing short-life molecular intermediates used for heterogeneous thin film synthesis and quenching the reaction prior to homogeneous reactions. In this paper, we present progress in the synthesis and deposition of semiconductor thin films with a focus on CdS using microreactor-assisted solution deposition and provide an overview of its prospect for scale-up. |
topic |
microreactor continuous flow semiconductor nanomaterial nanostructure thin film solution process |
url |
http://www.mdpi.com/2227-9717/2/2/441 |
work_keys_str_mv |
AT changhochoi microreactorassistedsolutiondepositionforcompoundsemiconductorthinfilms AT briankpaul microreactorassistedsolutiondepositionforcompoundsemiconductorthinfilms AT chihhungchang microreactorassistedsolutiondepositionforcompoundsemiconductorthinfilms |
_version_ |
1725170942830706688 |