Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
Summary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | Cell Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124721007622 |
id |
doaj-fd7ca3003b0d4b6e81dd2ed8d532da99 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maritza Puray-Chavez Kyle M. LaPak Travis P. Schrank Jennifer L. Elliott Dhaval P. Bhatt Megan J. Agajanian Ria Jasuja Dana Q. Lawson Keanu Davis Paul W. Rothlauf Zhuoming Liu Heejoon Jo Nakyung Lee Kasyap Tenneti Jenna E. Eschbach Christian Shema Mugisha Emily M. Cousins Erica W. Cloer Hung R. Vuong Laura A. VanBlargan Adam L. Bailey Pavlo Gilchuk James E. Crowe, Jr. Michael S. Diamond D. Neil Hayes Sean P.J. Whelan Amjad Horani Steven L. Brody Dennis Goldfarb M. Ben Major Sebla B. Kutluay |
spellingShingle |
Maritza Puray-Chavez Kyle M. LaPak Travis P. Schrank Jennifer L. Elliott Dhaval P. Bhatt Megan J. Agajanian Ria Jasuja Dana Q. Lawson Keanu Davis Paul W. Rothlauf Zhuoming Liu Heejoon Jo Nakyung Lee Kasyap Tenneti Jenna E. Eschbach Christian Shema Mugisha Emily M. Cousins Erica W. Cloer Hung R. Vuong Laura A. VanBlargan Adam L. Bailey Pavlo Gilchuk James E. Crowe, Jr. Michael S. Diamond D. Neil Hayes Sean P.J. Whelan Amjad Horani Steven L. Brody Dennis Goldfarb M. Ben Major Sebla B. Kutluay Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell Cell Reports SARS-CoV-2 COVID-19 ACE2-independent type I interferon RIG-I-like receptors virus-host interactions |
author_facet |
Maritza Puray-Chavez Kyle M. LaPak Travis P. Schrank Jennifer L. Elliott Dhaval P. Bhatt Megan J. Agajanian Ria Jasuja Dana Q. Lawson Keanu Davis Paul W. Rothlauf Zhuoming Liu Heejoon Jo Nakyung Lee Kasyap Tenneti Jenna E. Eschbach Christian Shema Mugisha Emily M. Cousins Erica W. Cloer Hung R. Vuong Laura A. VanBlargan Adam L. Bailey Pavlo Gilchuk James E. Crowe, Jr. Michael S. Diamond D. Neil Hayes Sean P.J. Whelan Amjad Horani Steven L. Brody Dennis Goldfarb M. Ben Major Sebla B. Kutluay |
author_sort |
Maritza Puray-Chavez |
title |
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell |
title_short |
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell |
title_full |
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell |
title_fullStr |
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell |
title_full_unstemmed |
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell |
title_sort |
systematic analysis of sars-cov-2 infection of an ace2-negative human airway cell |
publisher |
Elsevier |
series |
Cell Reports |
issn |
2211-1247 |
publishDate |
2021-07-01 |
description |
Summary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis. |
topic |
SARS-CoV-2 COVID-19 ACE2-independent type I interferon RIG-I-like receptors virus-host interactions |
url |
http://www.sciencedirect.com/science/article/pii/S2211124721007622 |
work_keys_str_mv |
AT maritzapuraychavez systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT kylemlapak systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT travispschrank systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT jenniferlelliott systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT dhavalpbhatt systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT meganjagajanian systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT riajasuja systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT danaqlawson systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT keanudavis systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT paulwrothlauf systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT zhuomingliu systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT heejoonjo systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT nakyunglee systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT kasyaptenneti systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT jennaeeschbach systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT christianshemamugisha systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT emilymcousins systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT ericawcloer systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT hungrvuong systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT lauraavanblargan systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT adamlbailey systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT pavlogilchuk systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT jamesecrowejr systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT michaelsdiamond systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT dneilhayes systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT seanpjwhelan systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT amjadhorani systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT stevenlbrody systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT dennisgoldfarb systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT mbenmajor systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell AT seblabkutluay systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell |
_version_ |
1721301949835378688 |
spelling |
doaj-fd7ca3003b0d4b6e81dd2ed8d532da992021-07-15T04:27:22ZengElsevierCell Reports2211-12472021-07-01362109364Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cellMaritza Puray-Chavez0Kyle M. LaPak1Travis P. Schrank2Jennifer L. Elliott3Dhaval P. Bhatt4Megan J. Agajanian5Ria Jasuja6Dana Q. Lawson7Keanu Davis8Paul W. Rothlauf9Zhuoming Liu10Heejoon Jo11Nakyung Lee12Kasyap Tenneti13Jenna E. Eschbach14Christian Shema Mugisha15Emily M. Cousins16Erica W. Cloer17Hung R. Vuong18Laura A. VanBlargan19Adam L. Bailey20Pavlo Gilchuk21James E. Crowe, Jr.22Michael S. Diamond23D. Neil Hayes24Sean P.J. Whelan25Amjad Horani26Steven L. Brody27Dennis Goldfarb28M. Ben Major29Sebla B. Kutluay30Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Program in Virology, Harvard Medical School, Boston, MA, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USAUniversity of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USADepartment of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USAVanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USAVanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USAUniversity of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADivision of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Institute for Informatics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Otolaryngology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Corresponding authorDepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Corresponding authorSummary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.http://www.sciencedirect.com/science/article/pii/S2211124721007622SARS-CoV-2COVID-19ACE2-independenttype I interferonRIG-I-like receptorsvirus-host interactions |