Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell

Summary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-...

Full description

Bibliographic Details
Main Authors: Maritza Puray-Chavez, Kyle M. LaPak, Travis P. Schrank, Jennifer L. Elliott, Dhaval P. Bhatt, Megan J. Agajanian, Ria Jasuja, Dana Q. Lawson, Keanu Davis, Paul W. Rothlauf, Zhuoming Liu, Heejoon Jo, Nakyung Lee, Kasyap Tenneti, Jenna E. Eschbach, Christian Shema Mugisha, Emily M. Cousins, Erica W. Cloer, Hung R. Vuong, Laura A. VanBlargan, Adam L. Bailey, Pavlo Gilchuk, James E. Crowe, Jr., Michael S. Diamond, D. Neil Hayes, Sean P.J. Whelan, Amjad Horani, Steven L. Brody, Dennis Goldfarb, M. Ben Major, Sebla B. Kutluay
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721007622
id doaj-fd7ca3003b0d4b6e81dd2ed8d532da99
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Maritza Puray-Chavez
Kyle M. LaPak
Travis P. Schrank
Jennifer L. Elliott
Dhaval P. Bhatt
Megan J. Agajanian
Ria Jasuja
Dana Q. Lawson
Keanu Davis
Paul W. Rothlauf
Zhuoming Liu
Heejoon Jo
Nakyung Lee
Kasyap Tenneti
Jenna E. Eschbach
Christian Shema Mugisha
Emily M. Cousins
Erica W. Cloer
Hung R. Vuong
Laura A. VanBlargan
Adam L. Bailey
Pavlo Gilchuk
James E. Crowe, Jr.
Michael S. Diamond
D. Neil Hayes
Sean P.J. Whelan
Amjad Horani
Steven L. Brody
Dennis Goldfarb
M. Ben Major
Sebla B. Kutluay
spellingShingle Maritza Puray-Chavez
Kyle M. LaPak
Travis P. Schrank
Jennifer L. Elliott
Dhaval P. Bhatt
Megan J. Agajanian
Ria Jasuja
Dana Q. Lawson
Keanu Davis
Paul W. Rothlauf
Zhuoming Liu
Heejoon Jo
Nakyung Lee
Kasyap Tenneti
Jenna E. Eschbach
Christian Shema Mugisha
Emily M. Cousins
Erica W. Cloer
Hung R. Vuong
Laura A. VanBlargan
Adam L. Bailey
Pavlo Gilchuk
James E. Crowe, Jr.
Michael S. Diamond
D. Neil Hayes
Sean P.J. Whelan
Amjad Horani
Steven L. Brody
Dennis Goldfarb
M. Ben Major
Sebla B. Kutluay
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
Cell Reports
SARS-CoV-2
COVID-19
ACE2-independent
type I interferon
RIG-I-like receptors
virus-host interactions
author_facet Maritza Puray-Chavez
Kyle M. LaPak
Travis P. Schrank
Jennifer L. Elliott
Dhaval P. Bhatt
Megan J. Agajanian
Ria Jasuja
Dana Q. Lawson
Keanu Davis
Paul W. Rothlauf
Zhuoming Liu
Heejoon Jo
Nakyung Lee
Kasyap Tenneti
Jenna E. Eschbach
Christian Shema Mugisha
Emily M. Cousins
Erica W. Cloer
Hung R. Vuong
Laura A. VanBlargan
Adam L. Bailey
Pavlo Gilchuk
James E. Crowe, Jr.
Michael S. Diamond
D. Neil Hayes
Sean P.J. Whelan
Amjad Horani
Steven L. Brody
Dennis Goldfarb
M. Ben Major
Sebla B. Kutluay
author_sort Maritza Puray-Chavez
title Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
title_short Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
title_full Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
title_fullStr Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
title_full_unstemmed Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
title_sort systematic analysis of sars-cov-2 infection of an ace2-negative human airway cell
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2021-07-01
description Summary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
topic SARS-CoV-2
COVID-19
ACE2-independent
type I interferon
RIG-I-like receptors
virus-host interactions
url http://www.sciencedirect.com/science/article/pii/S2211124721007622
work_keys_str_mv AT maritzapuraychavez systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT kylemlapak systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT travispschrank systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT jenniferlelliott systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT dhavalpbhatt systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT meganjagajanian systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT riajasuja systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT danaqlawson systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT keanudavis systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT paulwrothlauf systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT zhuomingliu systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT heejoonjo systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT nakyunglee systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT kasyaptenneti systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT jennaeeschbach systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT christianshemamugisha systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT emilymcousins systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT ericawcloer systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT hungrvuong systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT lauraavanblargan systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT adamlbailey systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT pavlogilchuk systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT jamesecrowejr systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT michaelsdiamond systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT dneilhayes systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT seanpjwhelan systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT amjadhorani systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT stevenlbrody systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT dennisgoldfarb systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT mbenmajor systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
AT seblabkutluay systematicanalysisofsarscov2infectionofanace2negativehumanairwaycell
_version_ 1721301949835378688
spelling doaj-fd7ca3003b0d4b6e81dd2ed8d532da992021-07-15T04:27:22ZengElsevierCell Reports2211-12472021-07-01362109364Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cellMaritza Puray-Chavez0Kyle M. LaPak1Travis P. Schrank2Jennifer L. Elliott3Dhaval P. Bhatt4Megan J. Agajanian5Ria Jasuja6Dana Q. Lawson7Keanu Davis8Paul W. Rothlauf9Zhuoming Liu10Heejoon Jo11Nakyung Lee12Kasyap Tenneti13Jenna E. Eschbach14Christian Shema Mugisha15Emily M. Cousins16Erica W. Cloer17Hung R. Vuong18Laura A. VanBlargan19Adam L. Bailey20Pavlo Gilchuk21James E. Crowe, Jr.22Michael S. Diamond23D. Neil Hayes24Sean P.J. Whelan25Amjad Horani26Steven L. Brody27Dennis Goldfarb28M. Ben Major29Sebla B. Kutluay30Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Program in Virology, Harvard Medical School, Boston, MA, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USAUniversity of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USALineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USADepartment of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USAVanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USAVanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USAUniversity of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USADepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADivision of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Institute for Informatics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USADepartment of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Otolaryngology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Corresponding authorDepartment of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Corresponding authorSummary: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.http://www.sciencedirect.com/science/article/pii/S2211124721007622SARS-CoV-2COVID-19ACE2-independenttype I interferonRIG-I-like receptorsvirus-host interactions