Singular Kneser solutions of higher-order quasilinear ordinary differential equations
In this paper we give a new sufficient condition in order that all nontrivial Kneser solutions of the quasilinear ordinary differential equation \[ D(\alpha_n, \alpha_{n-1}, \dots, \alpha_1)x = (-1)^{n}p(t)|x|^{\beta}\mathrm{sgn}\,x, \quad t \geq a, \tag{1.1} \label{abseq} \] are singular. Here, $D...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2021-04-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8853 |