Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown

Collagen cleavage, facilitated by collagenases of the matrix metalloproteinase (MMP) family, is crucial for many physiological and pathological processes such as wound healing, tissue remodeling, cancer invasion and organ morphogenesis. Earlier work has shown that mechanical force alters the cleavag...

Full description

Bibliographic Details
Main Authors: Chang, Shu-Wei (Contributor), Flynn, Brendan P. (Author), Ruberti, Jeffrey W. (Author), Buehler, Markus J (Author)
Other Authors: Massachusetts Institute of Technology. Center for Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Center for Computational Engineering (Contributor), Massachusetts Institute of Technology. Department of Civil and Environmental Engineering (Contributor), Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics (Contributor), Buehler, Markus J. (Contributor)
Format: Article
Language:English
Published: Elsevier, 2016-03-03T17:47:23Z.
Subjects:
Online Access:Get fulltext
LEADER 02843 am a22002893u 4500
001 101438
042 |a dc 
100 1 0 |a Chang, Shu-Wei  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Center for Computational Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics  |e contributor 
100 1 0 |a Chang, Shu-Wei  |e contributor 
100 1 0 |a Buehler, Markus J.  |e contributor 
700 1 0 |a Flynn, Brendan P.  |e author 
700 1 0 |a Ruberti, Jeffrey W.  |e author 
700 1 0 |a Buehler, Markus J  |e author 
245 0 0 |a Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown 
260 |b Elsevier,   |c 2016-03-03T17:47:23Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/101438 
520 |a Collagen cleavage, facilitated by collagenases of the matrix metalloproteinase (MMP) family, is crucial for many physiological and pathological processes such as wound healing, tissue remodeling, cancer invasion and organ morphogenesis. Earlier work has shown that mechanical force alters the cleavage rate of collagen. However, experimental results yielded conflicting data on whether applying force accelerates or slows down the degradation rate. Here we explain these discrepancies and propose a molecular mechanism by which mechanical force might change the rate of collagen cleavage. We find that a type I collagen heterotrimer is unfolded in its equilibrium state and loses its triple helical structure at the cleavage site without applied force, possibly enhancing enzymatic breakdown as each chain is exposed and can directly undergo hydrolysis. Under application of force, the naturally unfolded region refolds into a triple helical structure, potentially protecting the molecule against enzymatic breakdown. In contrast, a type I collagen homotrimer retains a triple helical structure even without applied force, making it more resistant to enzyme cleavage. In the case of the homotrimer, the application of force may directly lead to molecular unwinding, resulting in a destabilization of the molecule under increased mechanical loading. Our study explains the molecular mechanism by which force may regulate the formation and breakdown of collagenous tissue. 
520 |a National Science Foundation (U.S.) (CAREER CMMI-0642545) 
520 |a National Science Foundation (U.S.). Integrative Graduate Education and Research Traineeship (Nanomedicine Award DGE-0504331) 
520 |a National Institutes of Health (U.S.) (NEIEY0155500) 
546 |a en_US 
655 7 |a Article 
773 |t Biomaterials