Proteotoxic Stress Induces a Cell-Cycle Arrest by Stimulating Lon to Degrade the Replication Initiator DnaA

The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces...

Full description

Bibliographic Details
Main Authors: Liu, Jing (Author), Jonas, Kristina (Contributor), Laub, Michael T (Contributor), Chien, Peter 1976- (Author)
Other Authors: Howard Hughes Medical Institute (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor)
Format: Article
Language:English
Published: Elsevier, 2017-06-29T16:51:19Z.
Subjects:
Online Access:Get fulltext
LEADER 01937 am a22002533u 4500
001 110367
042 |a dc 
100 1 0 |a Liu, Jing  |e author 
100 1 0 |a Howard Hughes Medical Institute  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Jonas, Kristina  |e contributor 
100 1 0 |a Laub, Michael T  |e contributor 
700 1 0 |a Jonas, Kristina  |e author 
700 1 0 |a Laub, Michael T  |e author 
700 1 0 |a Chien, Peter  |d 1976-.   |e author 
245 0 0 |a Proteotoxic Stress Induces a Cell-Cycle Arrest by Stimulating Lon to Degrade the Replication Initiator DnaA 
260 |b Elsevier,   |c 2017-06-29T16:51:19Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110367 
520 |a The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces a cell-cycle arrest by triggering the degradation of DnaA, the conserved replication initiator. A depletion of available Hsp70 chaperone, DnaK, either through genetic manipulation or heat shock, induces synthesis of the Lon protease, which can directly degrade DnaA. Unexpectedly, we find that unfolded proteins, which accumulate following a loss of DnaK, also allosterically activate Lon to degrade DnaA, thereby ensuring a cell-cycle arrest. Our work reveals a mechanism for regulating DNA replication under adverse growth conditions. Additionally, our data indicate that unfolded proteins can actively and directly alter substrate recognition by cellular proteases. 
520 |a National Institutes of Health (U.S.) (grant (5R01GM082899) 
520 |a Deutsche Forschungsgemeinschaft (research fellowship (JO 925/1-1) 
546 |a en_US 
655 7 |a Article 
773 |t Cell