Dynamic control of endogenous metabolism with combinatorial logic circuits

Controlling gene expression during a bioprocess enables real-time metabolic control, coordinated cellular responses, and staging order-of-operations. Achieving this with small molecule inducers is impractical at scale and dynamic circuits are difficult to design. Here, we show that the same set of s...

Full description

Bibliographic Details
Main Authors: Moser, Felix (Contributor), Espah Borujeni, Amin (Contributor), Ghodasara, Amar Navin (Contributor), Cameron, Douglas (Contributor), Park, YongJin (Contributor), Voigt, Christopher A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2019-03-29T19:41:50Z.
Subjects:
Online Access:Get fulltext
LEADER 02577 am a22003253u 4500
001 121120
042 |a dc 
100 1 0 |a Moser, Felix  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Medical Engineering & Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Moser, Felix  |e contributor 
100 1 0 |a Espah Borujeni, Amin  |e contributor 
100 1 0 |a Ghodasara, Amar Navin  |e contributor 
100 1 0 |a Cameron, Douglas  |e contributor 
100 1 0 |a Park, YongJin  |e contributor 
100 1 0 |a Voigt, Christopher A.  |e contributor 
700 1 0 |a Espah Borujeni, Amin  |e author 
700 1 0 |a Ghodasara, Amar Navin  |e author 
700 1 0 |a Cameron, Douglas  |e author 
700 1 0 |a Park, YongJin  |e author 
700 1 0 |a Voigt, Christopher A.  |e author 
245 0 0 |a Dynamic control of endogenous metabolism with combinatorial logic circuits 
260 |b Nature Publishing Group,   |c 2019-03-29T19:41:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/121120 
520 |a Controlling gene expression during a bioprocess enables real-time metabolic control, coordinated cellular responses, and staging order-of-operations. Achieving this with small molecule inducers is impractical at scale and dynamic circuits are difficult to design. Here, we show that the same set of sensors can be integrated by different combinatorial logic circuits to vary when genes are turned on and off during growth. Three Escherichia coli sensors that respond to the consumption of feedstock (glucose), dissolved oxygen, and by-product accumulation (acetate) are constructed and optimized. By integrating these sensors, logic circuits implement temporal control over an 18-h period. The circuit outputs are used to regulate endogenous enzymes at the transcriptional and post-translational level using CRISPRi and targeted proteolysis, respectively. As a demonstration, two circuits are designed to control acetate production by matching their dynamics to when endogenous genes are expressed (pta or poxB) and respond by turning off the corresponding gene. This work demonstrates how simple circuits can be implemented to enable customizable dynamic gene regulation. 
520 |a Synthetic Biology Engineering Research Center (SynBERC EEC0540879) 
520 |a United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014‐13‐1‐0074) 
520 |a United States. Department of Energy (DE‐SC0018368) 
655 7 |a Article 
773 |t Molecular Systems Biology