Signaling network state predicts Twist-mediated effects on breast cell migration across diverse growth factor contexts

Epithelial-mesenchymal transition (EMT), whether in developmental morphogenesis or malignant transformation, prominently involves modified cell motility behavior. Although major advances have transpired in understanding the molecular pathways regulating the process of EMT induction per se by certain...

Full description

Bibliographic Details
Main Authors: Kim, Hyung-Do (Contributor), Meyer, Aaron Samuel (Contributor), Wagner, Joel Patrick (Contributor), Wells, Alan (Author), Gertler, Frank (Contributor), Hughes-Alford, Shannon Kay (Author), Lauffenburger, Douglas A (Author)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor), Lauffenburger, Douglas A. (Contributor), Alford, Shannon K. (Contributor)
Format: Article
Language:English
Published: American Society of Biochemistry and Molecular Biology, 2012-01-04T19:53:42Z.
Subjects:
Online Access:Get fulltext
LEADER 03068 am a22003733u 4500
001 67899
042 |a dc 
100 1 0 |a Kim, Hyung-Do  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Lauffenburger, Douglas A.  |e contributor 
100 1 0 |a Kim, Hyung-Do  |e contributor 
100 1 0 |a Meyer, Aaron Samuel  |e contributor 
100 1 0 |a Wagner, Joel Patrick  |e contributor 
100 1 0 |a Alford, Shannon K.  |e contributor 
100 1 0 |a Gertler, Frank  |e contributor 
100 1 0 |a Lauffenburger, Douglas A.  |e contributor 
700 1 0 |a Meyer, Aaron Samuel  |e author 
700 1 0 |a Wagner, Joel Patrick  |e author 
700 1 0 |a Wells, Alan  |e author 
700 1 0 |a Gertler, Frank  |e author 
700 1 0 |a Hughes-Alford, Shannon Kay  |e author 
700 1 0 |a Lauffenburger, Douglas A  |e author 
245 0 0 |a Signaling network state predicts Twist-mediated effects on breast cell migration across diverse growth factor contexts 
260 |b American Society of Biochemistry and Molecular Biology,   |c 2012-01-04T19:53:42Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/67899 
520 |a Epithelial-mesenchymal transition (EMT), whether in developmental morphogenesis or malignant transformation, prominently involves modified cell motility behavior. Although major advances have transpired in understanding the molecular pathways regulating the process of EMT induction per se by certain environmental stimuli, an important outstanding question is how the activities of signaling pathways governing motility yield the diverse movement behaviors characteristic of pre-induction versus postinduction states across a broad landscape of growth factor contexts. For the particular case of EMT induction in human mammary cells by ectopic expression of the transcription factor Twist, we found the migration responses to a panel of growth factors (EGF, HRG, IGF, HGF) dramatically disparate between confluent pre-Twist epithelial cells and sparsely distributed post-Twist mesenchymal cells-but that a computational model quantitatively integrating multiple key signaling node activities could nonetheless account for this full range of behavior. Moreover, motility in both conditions was successfully predicted a priori for an additional growth factor (PDGF) treatment. Although this signaling network state model could comprehend motility behavior globally, modulation of the network interactions underlying the altered pathway activities was identified by ascertaining differences in quantitative topological influences among the nodes between the two conditions. 
520 |a National Institutes of Health (U.S.) (grant U54-CA112967) 
520 |a National Institutes of Health (U.S.) (grant R01-GM081336) 
520 |a Ludwig Center for Molecular Oncology 
546 |a en_US 
655 7 |a Article 
773 |t Molecular and Cellular Proteomics