A load driver device for engineering modularity in biological networks

The behavior of gene modules in complex synthetic circuits is often unpredictable. After joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function. Here we devised a genetic d...

Full description

Bibliographic Details
Main Authors: Mishra, Deepak (Contributor), Lin, Allen (Contributor), Del Vecchio, Domitilla (Contributor), Weiss, Ron (Contributor), Rivera, Phillip M. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Synthetic Biology Center (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2015-06-15T14:03:38Z.
Subjects:
Online Access:Get fulltext
LEADER 02925 am a22003853u 4500
001 97410
042 |a dc 
100 1 0 |a Mishra, Deepak  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Synthetic Biology Center  |e contributor 
100 1 0 |a Mishra, Deepak  |e contributor 
100 1 0 |a Rivera, Phillip M.  |e contributor 
100 1 0 |a Lin, Allen  |e contributor 
100 1 0 |a Del Vecchio, Domitilla  |e contributor 
100 1 0 |a Weiss, Ron  |e contributor 
700 1 0 |a Lin, Allen  |e author 
700 1 0 |a Del Vecchio, Domitilla  |e author 
700 1 0 |a Weiss, Ron  |e author 
700 1 0 |a Rivera, Phillip M.  |e author 
245 0 0 |a A load driver device for engineering modularity in biological networks 
260 |b Nature Publishing Group,   |c 2015-06-15T14:03:38Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/97410 
520 |a The behavior of gene modules in complex synthetic circuits is often unpredictable. After joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function. Here we devised a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle of timescale separation: inclusion of the load driver's fast phosphotransfer processes restores the capability of a slower transcriptional circuit to respond to time-varying input signals even in the presence of substantial load. Without the load driver, we observed circuit behavior that suffered from a 76% delay in response time and a 25% decrease in system bandwidth due to load. With the addition of a load driver, circuit performance was almost completely restored. Load drivers will serve as fundamental building blocks in the creation of complex, higher-level genetic circuits. 
520 |a Eni-MIT Energy Initiative Founding Member Program 
520 |a National Science Foundation (U.S.). Graduate Research Fellowship (Grant DGE-1122374) 
520 |a National Science Foundation (U.S.) (CCF-1058127) 
520 |a National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SA5284-11210) 
520 |a United States. Air Force Office of Scientific Research (FA9550-12-1-0129) 
520 |a United States. Army Research Office (Institute for Collaborative Biotechnologies W911NF-09-D-0001) 
520 |a National Institutes of Health (U.S.) (P50 GM098792) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Biotechnology