Stabilized low-n amyloid-ß oligomers induce robust novel object recognition deficits associated with inflammatory, synaptic, and GABAergic dysfunction in the rat

Yes === Background:With current treatments for Alzheimer’s disease (AD) only providing temporary symptomatic benefits, disease modifying drugs are urgently required. This approach relies on improved understanding of the early pathophysiology of AD. A new hypothesis has emerged, in which early memory...

Full description

Bibliographic Details
Main Authors: Watremez, W., Jackson, J., Almari, B., McLean, Samantha L., Grayson, B., Neilla, J.C., Fischer, N., Allouche, A., Koziel, V., Pillot, T., Harte, M.K.
Language:en
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10454/15087
Description
Summary:Yes === Background:With current treatments for Alzheimer’s disease (AD) only providing temporary symptomatic benefits, disease modifying drugs are urgently required. This approach relies on improved understanding of the early pathophysiology of AD. A new hypothesis has emerged, in which early memory loss is considered a synapse failure caused by soluble amyloid-β oligomers (Aβo). These small soluble Aβo, which precede the formation of larger fibrillar assemblies, may be the main cause of early AD pathologies. Objective:The aim of the current study was to investigate the effect of acute administration of stabilized low-n amyloid-β1-42 oligomers (Aβo1-42) on cognitive, inflammatory, synaptic, and neuronal markers in the rat. Methods:Female and male Lister Hooded rats received acute intracerebroventricular (ICV) administration of either vehicle or 5 nmol of Aβo1-42 (10μL). Cognition was assessed in the novel object recognition (NOR) paradigm at different time points. Levels of inflammatory (IL-1β, IL-6, TNF-α), synaptic (PSD-95, SNAP-25), and neuronal (n-acetylaspartate, parvalbumin-positive cells) markers were investigated in different brain regions (prefrontal and frontal cortex, striatum, dorsal and ventral hippocampus). Results:Acute ICV administration of Aβo1-42 induced robust and enduring NOR deficits. These deficits were reversed by acute administration of donepezil and rolipram but not risperidone. Postmortem analysis revealed an increase in inflammatory markers, a decrease in synaptic markers and parvalbumin containing interneurons in the frontal cortex, with no evidence of widespread neuronal loss. Conclusion:Taken together the results suggest that acute administration of soluble low-n Aβo may be a useful model to study the early mechanisms involved in AD and provide us with a platform for testing novel therapeutic approaches that target the early underlying synaptic pathology.