應用機器學習於標準普爾指數期貨
本系統係藉由分析歷史交易資料來預測S&P500期貨市場之漲幅。 我們改進了Tsaih et al. (1998)提出的混和式AI系統。 該系統結合了Rule Base 系統以及類神經網路作為其預測之機制。我們針對該系統在以下幾點進行改善:(1) 將原本的日期資料改為使用分鐘資料作為輸入。(2) 本研究採用了“移動視窗”的技術,在移動視窗的概念下,每一個視窗我們希望能夠在60分鐘內訓練完成。(3)在擴增了額外的變數 – VIX價格做為系統的輸入。(4) 由於運算量上升,因此本研究利用TensorFlow 以及GPU運算來改進系統之運作效能。 我們發現VIX變數確實可以改善系統之預測精準度...
Main Authors: | , |
---|---|
Language: | 英文 |
Published: |
國立政治大學
|
Subjects: | |
Online Access: | http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0104356036%22. |