Physical Design Automation for System-on-Packages and 3D-Integrated Circuits

The focus of this research was to develop interconnect-centric physical design tools for 3D technologies. A new routing model for the SOP structure was developed which incorporated the 3D structure and formalized the resource structure that facilitated the development of the global routing tool. Th...

Full description

Bibliographic Details
Main Author: Minz, Jacob Rajkumar
Format: Others
Language:en_US
Published: Georgia Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1853/14012
Description
Summary:The focus of this research was to develop interconnect-centric physical design tools for 3D technologies. A new routing model for the SOP structure was developed which incorporated the 3D structure and formalized the resource structure that facilitated the development of the global routing tool. The challenge of this work was to intelligently convert the 3D SOP routing problem into a set of 2D problems which could be solved efficiently. On the lines of MCM, the global routing problem was divided into a number of phases namely, coarse pin distribution, net distribution, detailed pin distribution, topology generation, layer assignment, channel assignment and local routing. The novelty in this paradigm is due to the feed-through vias needed by the nets which traverse through multiple placement layers. To gain further improvements in performance, optical routing was proposed and a cost analysis study was done. The areas for the placement of waveguides were efficiently determined, which reduced delays and maximized utilization. The global router developed was integrated into a simulated-annealing based floorplanner to investigate trade-offs of various objectives. Since power-supply noise suppression is of paramount importance in SOP, a model was developed for the SOP power-supply network. Decap allocation, and insertion were also integrated into the framework. The challenges in this work were to integrate computationally intensive analysis tools with a floorplanning that works to its best efficency provided the evaluation of the cost functions are rapid. Trajectory-based approaches were used to sample representative data points for congestion analysis and interpolate the the congestion metric during the optimization schedule. Efficient algorithms were also proposed for 3D clock routing, which acheived equal skews under uniform and worst thermal profiles. Other objectives such as wirelength, through-vias, and power were also handled.