Reliability of SiGe HBTs for extreme environment and RF applications

The objective of the proposed research is to characterize the safe-operating-area of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) under radiofrequency (RF) operation and extreme environments. The degradation of SiGe HBTs due to mixed-mode DC and RF stress has been modeled for t...

Full description

Bibliographic Details
Main Author: Cheng, Peng
Published: Georgia Institute of Technology 2012
Subjects:
RF
Online Access:http://hdl.handle.net/1853/42836
Description
Summary:The objective of the proposed research is to characterize the safe-operating-area of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) under radiofrequency (RF) operation and extreme environments. The degradation of SiGe HBTs due to mixed-mode DC and RF stress has been modeled for the first time. State-of-the-art 200 GHz SiGe HBTs were first characterized, and then DC and RF stressed. Excess base leakage current was modeled as a function of the stress current and voltage. This physics-based stress model was then designed as a sub-circuit in Cadence, and incorporated into SiGe power amplifier design to predict the DC and RF stress-induced excess base current. Based on these studies, characterization of RF safe-operating-area for SiGe HBTs using devices and circuits is proposed.