Cationic polymer enhanced hydrolysis of cornstarch for the production of biofuels

The mechanism through which a charged polymer cationic polyacrylamide (C-PAM) operates to increase the rate of cornstarch hydrolysis was investigated. The main objective was to determine the major factors that affect the mechanism so that these parameters may be adjusted to achieve optimal hydrolys...

Full description

Bibliographic Details
Main Author: Maxwell, Kendra Elaine
Published: Georgia Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1853/43661
Description
Summary:The mechanism through which a charged polymer cationic polyacrylamide (C-PAM) operates to increase the rate of cornstarch hydrolysis was investigated. The main objective was to determine the major factors that affect the mechanism so that these parameters may be adjusted to achieve optimal hydrolysis rates. A combination of analytical methods including dynamic light scattering, optical imaging, and uv-vis spectroscopy were used to study polymer, starch, and enzyme interactions as a function of process conditions. It was found that C-PAM binds strongly to starch granules, increasing solubilization and decreasing onset gelatinization temperature. Granule swelling was unaffected by C-PAM. Both binding of enzyme to cornstarch, and rate of cornstarch hydrolysis were found to increase in the presence of C-PAM. By analogy to previous work on cationic polymer promoted hydrolysis of cellulose, it was proposed that the polymer reduces the charge on the starch surface through a "charge-patch" mechanism. Because both enzyme and substrate are negatively charged, the positively charged polymer reduces the charge repulsion experienced by the approaching enzyme. This leads to stronger enzyme-substrate binding, and faster hydrolysis. There is a mirror image relationship between viscosity of the medium and hydrolysis rate, which allows optimization of these parameters with enzyme and C-PAM dosage. Overall, the polymer addition reduced enzyme dose by 62% depending on the conditions used, so this method could have significant economic impact on the industrial conversion of starch to ethanol.