ESTIMATING VAR MODELS FOR THE TERM STRUCTURE OF INTEREST RATES

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === Nessa dissertação seguimos o artigo de Evans e Marshall (1998) e propomos novas abordagens para modelar o desenvolvimento conjunto de variáveis macroeconômicas e retornos de títulos de renda fixacom diversas maturidades. Os modelos são estim...

Full description

Bibliographic Details
Main Author: REGINA KAZUMI FUKUDA
Other Authors: HELIO CORTES VIEIRA LOPES
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 2006
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9633@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9633@2
Description
Summary:PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === Nessa dissertação seguimos o artigo de Evans e Marshall (1998) e propomos novas abordagens para modelar o desenvolvimento conjunto de variáveis macroeconômicas e retornos de títulos de renda fixacom diversas maturidades. Os modelos são estimados e comparados com outros, já tradicionais na literatura, baseados em modelos auto- regresivos univariados ou de correção de erros. em seguida, os novos modelos são utilizados para avaliar se a informação contida nas variáveis macroeconômicas e na estrutura a termo das taxas de juros ajuda a melhorar a capacidade de previsão. A principal conclusão é que, se o interese maior está em previsões de curto prazo, então não há melhoria significativa ao agregar outras informações que não sejam aquelas já contidas em observações passadas do próprio rendimento em questão. se, no entanto, o interesse maior está em previsões de longo prazo (que é o caso de fundos de previdência, sejam eles abertos ou fechados), então a informação inerente às variáveis macroeconômicas consegue melhorar o desempenho preditivo. === In this dissertation we follow Evans and Marshall (1998) and propose new approaches for modeling the joint development of macro variables and the returns of government bond yields of several maturities. The models are estimated and compared with other forecasting schemes previously proposed in the literature, especially those relying on univariate, VAR and error correction methods. The models are then used to judge the hypothesis that the information content of macro variables and the term structure of interest rates as a whole helps improving forecasting performance. Our main conclusion is quite simple: if one is interested in computing short term forecasts, then there is no significant improvement in incorporating information other than the one already present in past observations of the yield at hand; however, if one worries about long term forecasts (which is frequently the case of pension insurance companies), then the information content of macro variables and the term structure can improve forecasting performance