Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures

Recently, group III-nitride nanowire heterostructures have been extensively investigated. Due to the effective lateral stress relaxation, such nanoscale heterostructures can be epitaxially grown on silicon or other foreign substrates and can exhibit drastically reduced dislocations and polarization...

Full description

Bibliographic Details
Main Author: Nguyen, Hieu
Other Authors: Zetian Mi (Supervisor)
Format: Others
Language:en
Published: McGill University 2012
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107905
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.107905
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Engineering - Materials Science
spellingShingle Engineering - Materials Science
Nguyen, Hieu
Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
description Recently, group III-nitride nanowire heterostructures have been extensively investigated. Due to the effective lateral stress relaxation, such nanoscale heterostructures can be epitaxially grown on silicon or other foreign substrates and can exhibit drastically reduced dislocations and polarization fields, compared to their planar counterparts. This dissertation reports on the achievement of a new class of III-nitride nanoscale heterostructures, including InGaN/GaN dot-in-a-wires and nearly defect-free InN nanowires on a silicon platform. We have further developed a new generation of nanowire devices, including ultrahigh-efficiency full-color light emitting diodes (LEDs) and solar cells on a silicon platform.We have identified two major mechanisms, including poor hole transport and electron overflow, that severely limit the performance of GaN-based nanowire LEDs. With the incorporation of the special techniques of p-type modulation doping and AlGaN electron blocking layer in the dot-in-a-wire LED active region, we have demonstrated phosphor-free white-light LEDs that can exhibit, for the first time, internal quantum efficiency of > 50%, negligible efficiency droop up to ~ 2,000A/cm2, and extremely high stable emission characteristics at room temperature, which are ideally suited for future smart lighting and full-color display applications.We have also studied the epitaxial growth, fabrication and characterization of InN:Mg/i-InN/InN:Si nanowire axial structures on n-type Si(111) substrates and demonstrated the first InN nanowire solar cells. Under one-sun (AM 1.5G) illumination, the devices exhibit a short-circuit current density of ~ 14.4 mA/cm2, open circuit voltage of 0.14 V , fill factor of 34.0%, and energy conversion efficiency of 0.68%. This work opens up exciting possibilities for InGaN nanowire-based, full solar-spectrum third-generation solar cells. === Récemment, les hétérostructures à base de nitride et de groupe III ont fait l'objet de recherches intensives. Grâce à la relaxation latérale effective du stress, de telles hétérostructures d'échelle nanométrique peuvent être déposés sur du Silicium ou d'autres substrats. Celles-ci démontrent une réduction dramatique des dislocations et des champs de polarisations comparativement à leurs contreparties planes. Cette dissertation rapporte l'accomplissement d'une nouvelle classe de matériau nanométrique, soit des hétérostructures III-nitride incluant InGaN/GaN point dans fils ainsi que des nanofils d'InN presque sans défauts sur du Silicium. De plus, nous avons développé une nouvelle génération de dispositifs à base de nanofils, incluant des diodes émettrices de lumière (LEDs) à efficacité ultra haute et spectre visible complet ainsi que des cellules solaires sur une gaufre de Silicium. Nous avons identifié 2 mécanismes majeurs, incluant le faible transport des trous et le surplus d'électrons, qui limitent sérieusement la performance des LEDs à base de nanofils de GaN. Avec l'ajout de certaines techniques spéciales de modulation de type p, et une couche bloquante d'électrons faite de AlGaN dans la région active de la LED point dans fil. Par ailleurs, nous avons démontré des LEDs blanche sans phosphore qui démontrent, pour la première fois, une efficacité quantique supérieure à 50% ainsi qu'une baisse d'efficacité négligeable jusqu'à ~ 2,000A/cm2 et des caractéristiques d'émissions très hautes et stables à température pièce. Celles-ci sont donc toutes désignées pour des applications d'illumination intelligentes et des écrans pleines couleurs. La croissance par épitaxie, la fabrication et la caractérisation des nanofils d'InN:Mg/i-InN/InN:Si axiaux sur des substrats de Si(111) de type n et démontré la première cellule solaire à base d'InN. Sous l'illumination d'un soleil (AM 1.5G), les dispositifs démontrent une densité de courant de ~ 14.4 mA/cm2 en court-circuit, un voltage de circuit ouvert de 0.14V, un facteur de remplissage de 34.0% et une efficacité de conversion d'énergie de 0.68%. Ce travail ouvre des portes excitantes pour des cellules solaires plein spectre de troisième génération à base de nanofils d'InGaN.
author2 Zetian Mi (Supervisor)
author_facet Zetian Mi (Supervisor)
Nguyen, Hieu
author Nguyen, Hieu
author_sort Nguyen, Hieu
title Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
title_short Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
title_full Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
title_fullStr Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
title_full_unstemmed Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures
title_sort molecular beam epitaxial growth, characterization and device applications of iii-nitride nanowire heterostructures
publisher McGill University
publishDate 2012
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107905
work_keys_str_mv AT nguyenhieu molecularbeamepitaxialgrowthcharacterizationanddeviceapplicationsofiiinitridenanowireheterostructures
_version_ 1716640678966984704
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1079052014-02-13T03:53:05ZMolecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructuresNguyen, HieuEngineering - Materials ScienceRecently, group III-nitride nanowire heterostructures have been extensively investigated. Due to the effective lateral stress relaxation, such nanoscale heterostructures can be epitaxially grown on silicon or other foreign substrates and can exhibit drastically reduced dislocations and polarization fields, compared to their planar counterparts. This dissertation reports on the achievement of a new class of III-nitride nanoscale heterostructures, including InGaN/GaN dot-in-a-wires and nearly defect-free InN nanowires on a silicon platform. We have further developed a new generation of nanowire devices, including ultrahigh-efficiency full-color light emitting diodes (LEDs) and solar cells on a silicon platform.We have identified two major mechanisms, including poor hole transport and electron overflow, that severely limit the performance of GaN-based nanowire LEDs. With the incorporation of the special techniques of p-type modulation doping and AlGaN electron blocking layer in the dot-in-a-wire LED active region, we have demonstrated phosphor-free white-light LEDs that can exhibit, for the first time, internal quantum efficiency of > 50%, negligible efficiency droop up to ~ 2,000A/cm2, and extremely high stable emission characteristics at room temperature, which are ideally suited for future smart lighting and full-color display applications.We have also studied the epitaxial growth, fabrication and characterization of InN:Mg/i-InN/InN:Si nanowire axial structures on n-type Si(111) substrates and demonstrated the first InN nanowire solar cells. Under one-sun (AM 1.5G) illumination, the devices exhibit a short-circuit current density of ~ 14.4 mA/cm2, open circuit voltage of 0.14 V , fill factor of 34.0%, and energy conversion efficiency of 0.68%. This work opens up exciting possibilities for InGaN nanowire-based, full solar-spectrum third-generation solar cells.Récemment, les hétérostructures à base de nitride et de groupe III ont fait l'objet de recherches intensives. Grâce à la relaxation latérale effective du stress, de telles hétérostructures d'échelle nanométrique peuvent être déposés sur du Silicium ou d'autres substrats. Celles-ci démontrent une réduction dramatique des dislocations et des champs de polarisations comparativement à leurs contreparties planes. Cette dissertation rapporte l'accomplissement d'une nouvelle classe de matériau nanométrique, soit des hétérostructures III-nitride incluant InGaN/GaN point dans fils ainsi que des nanofils d'InN presque sans défauts sur du Silicium. De plus, nous avons développé une nouvelle génération de dispositifs à base de nanofils, incluant des diodes émettrices de lumière (LEDs) à efficacité ultra haute et spectre visible complet ainsi que des cellules solaires sur une gaufre de Silicium. Nous avons identifié 2 mécanismes majeurs, incluant le faible transport des trous et le surplus d'électrons, qui limitent sérieusement la performance des LEDs à base de nanofils de GaN. Avec l'ajout de certaines techniques spéciales de modulation de type p, et une couche bloquante d'électrons faite de AlGaN dans la région active de la LED point dans fil. Par ailleurs, nous avons démontré des LEDs blanche sans phosphore qui démontrent, pour la première fois, une efficacité quantique supérieure à 50% ainsi qu'une baisse d'efficacité négligeable jusqu'à ~ 2,000A/cm2 et des caractéristiques d'émissions très hautes et stables à température pièce. Celles-ci sont donc toutes désignées pour des applications d'illumination intelligentes et des écrans pleines couleurs. La croissance par épitaxie, la fabrication et la caractérisation des nanofils d'InN:Mg/i-InN/InN:Si axiaux sur des substrats de Si(111) de type n et démontré la première cellule solaire à base d'InN. Sous l'illumination d'un soleil (AM 1.5G), les dispositifs démontrent une densité de courant de ~ 14.4 mA/cm2 en court-circuit, un voltage de circuit ouvert de 0.14V, un facteur de remplissage de 34.0% et une efficacité de conversion d'énergie de 0.68%. Ce travail ouvre des portes excitantes pour des cellules solaires plein spectre de troisième génération à base de nanofils d'InGaN.McGill UniversityZetian Mi (Supervisor)2012Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Electrical and Computer Engineering) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107905