Bayesian exploration in Markov decision processes
Markov Decision Processes are a mathematical framework widely used for stochastic optimization and control problems. Reinforcement Learning is a branch of Artificial Intelligence that deals with stochastic environments where the dynamics of the system are unknown. A major issue for learning algorit...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2007
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18479 |