Atomic force microscopy studies on the electrostatic environment and energy levels of self-assembled quantum dots
The ability of quantum dots to confine single charges at discrete energy levels makes them a promising platform for novel electronic and optoelectronic devices. Self-assembled quantum dots are of considerable interest because their size, shape, and material can be controlled during growth. These p...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2010
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96933 |