有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究

博士 === 國立清華大學 === 化學工程研究所 === 79 === With the high potential of mass production by MOCVD process and the probadility of material and device hybridization for hateroepitaxy, the growth of CdTe/GaAs heteroepitaxial films by MOCVD process was studied in thi...

Full description

Bibliographic Details
Main Authors: GLAO, YING-RUI, 廖瑛瑞
Other Authors: ZHOU, GENG-SHENG
Format: Others
Language:zh-TW
Published: 1990
Online Access:http://ndltd.ncl.edu.tw/handle/48664346598129339772
id ndltd-TW-079NTHU2063025
record_format oai_dc
spelling ndltd-TW-079NTHU20630252016-07-25T04:07:12Z http://ndltd.ncl.edu.tw/handle/48664346598129339772 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究 GLAO, YING-RUI 廖瑛瑞 博士 國立清華大學 化學工程研究所 79 With the high potential of mass production by MOCVD process and the probadility of material and device hybridization for hateroepitaxy, the growth of CdTe/GaAs heteroepitaxial films by MOCVD process was studied in this work. We hope that it can thus increase our understanding of the fundamental mechanisms of this epitaxial process and also the development of high quality CdTe/GaAs epilayers. In. thermodynamic calculations, the principle of the Gibbs free energy minimization was used to predict the relationship between the growth condition and the composition in HgCdTe epilayer as grown by the MOCVD process. We had also successfully extended this technique to evaluate the equilibrium point defect concentrations in HgDdTd. This method is more favorable in the case of multiphase and multicomponent (including opint defects) equilibrium calculations and it can be easily generalized into a computer program. The growth of DdTe epitaxial layers on both (100) and (111) GaAs was studied experimentally. Our results indicate that the growth rate on (111) GaAs is about twice of that on corresponding (100) GaAs substrates under the same growth conditions. This is due to the difference of atomic layer distances and atomic bonding patterns between the (100) and (111) surfaces. In the case of (100)CdTe epitaxial growth, the growth rates remained about the same when DMCd was increased, but it increased to about twice the value when DETe was increased instead. However, this increase seemed to stop when the molar ratio of DETe to DMCd went beyond around 3. This is probably due to the smaller diffusion coefficient and adsorption equilibrium constant of DETe. The growth rate will in general increase with increasing layer thickness, because the subgrain boundaries and dislocation density will decrease with increasing layer thickness. There are two growth modes observed in the (111) CdTe/(111) GaAs epitaxial growth, which occurs at different growth temperatures. The evidence of this change in growth mode can be found in the surface morphology, FWHM of the DCRC measurement and the d-spacing variation in these epitaxial layers. From DCRC measurements, we know that the dislocation density and the lattice strain in the epitaxial layers caused by the lattice mismatch will decrease with increasing layer thickness. 由於MOCVE 製程具有可量產之潛力,及異質磊晶成長的易於達到材料及元件混成的目 的。因此吾人針對MOCVD方法生長CdTd/GaAs磊晶,進行完整性的研究,期望能瞭解Cd Te成長機構,俾能對日後磊晶技術的發展提供更深一層的瞭解與幫助。 在理論計算方面,吾人利用傳統熱力學的自由能最小化原理,可以預估於一個複雜的 MOCVD 反應系統內,生長HgDdTe時,在熱力學平衡的狀況下,必須以何種進料濃度才 能獲得預期的組成。吾人並且成功地將傳統化工熱力學的計算方法,推展至缺陷熱力 學的計算,並可獲得多相,多成份(包括缺陷物質)在各個平衡狀態下的濃度。 在實驗方面,吾人以二甲基鎘及二乙基碲為反應物在(100) GaAs及(111) GaAs基板上 成長磊晶,並且觀察到CdTe磊晶在(111) GaAs上的生長速率比在(100) GaAs上快約1 倍,此一生長速率的差距,主要是由於不同晶面的層間距不同,以及二者表面原子鍵 結方式不同,致使表面反應程序不同所造成。 在(100)CdTe 的生長系統中,當吾人增加DMCd的進料量時,生長速率仍保持不變,但 是若反過來增加DETe的進料量時,生長速率會隨著增加,直到DETe/DMCd>3 時,才達 到一個飽和的狀態,這是由於DETe的擴散速率及吸附力較DMCd小所造成的。 另一方面生長速率也隨著磊晶厚度的增加而增加,這是由於磊晶內部由界面上晶格不 匹配漸漸消失,另一方面次晶粒擴大,次晶粒界減少也使差排密度減少,而促成生長 速率的增加。 在(111)DdTe(111)GaAs的成長系統中,吾人可觀察到兩種不同的生長機構。主要的原 因是由於生長溫度不同,造成提供堆疊原子的量及表面擴散速率不同所致。這種生長 機構的變化,並且可以在表面型態,雙晶X-光繞射的半高寬及磊晶本身面間距的變化 獲得印證。由DCRC測量,並可獲知磊晶內部的差排密度及界面晶格不匹配所引起的應 變,將隨著磊晶厚度的增加而減少。 ZHOU, GENG-SHENG 周更生 1990 學位論文 ; thesis 0 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 博士 === 國立清華大學 === 化學工程研究所 === 79 === With the high potential of mass production by MOCVD process and the probadility of material and device hybridization for hateroepitaxy, the growth of CdTe/GaAs heteroepitaxial films by MOCVD process was studied in this work. We hope that it can thus increase our understanding of the fundamental mechanisms of this epitaxial process and also the development of high quality CdTe/GaAs epilayers. In. thermodynamic calculations, the principle of the Gibbs free energy minimization was used to predict the relationship between the growth condition and the composition in HgCdTe epilayer as grown by the MOCVD process. We had also successfully extended this technique to evaluate the equilibrium point defect concentrations in HgDdTd. This method is more favorable in the case of multiphase and multicomponent (including opint defects) equilibrium calculations and it can be easily generalized into a computer program. The growth of DdTe epitaxial layers on both (100) and (111) GaAs was studied experimentally. Our results indicate that the growth rate on (111) GaAs is about twice of that on corresponding (100) GaAs substrates under the same growth conditions. This is due to the difference of atomic layer distances and atomic bonding patterns between the (100) and (111) surfaces. In the case of (100)CdTe epitaxial growth, the growth rates remained about the same when DMCd was increased, but it increased to about twice the value when DETe was increased instead. However, this increase seemed to stop when the molar ratio of DETe to DMCd went beyond around 3. This is probably due to the smaller diffusion coefficient and adsorption equilibrium constant of DETe. The growth rate will in general increase with increasing layer thickness, because the subgrain boundaries and dislocation density will decrease with increasing layer thickness. There are two growth modes observed in the (111) CdTe/(111) GaAs epitaxial growth, which occurs at different growth temperatures. The evidence of this change in growth mode can be found in the surface morphology, FWHM of the DCRC measurement and the d-spacing variation in these epitaxial layers. From DCRC measurements, we know that the dislocation density and the lattice strain in the epitaxial layers caused by the lattice mismatch will decrease with increasing layer thickness. 由於MOCVE 製程具有可量產之潛力,及異質磊晶成長的易於達到材料及元件混成的目 的。因此吾人針對MOCVD方法生長CdTd/GaAs磊晶,進行完整性的研究,期望能瞭解Cd Te成長機構,俾能對日後磊晶技術的發展提供更深一層的瞭解與幫助。 在理論計算方面,吾人利用傳統熱力學的自由能最小化原理,可以預估於一個複雜的 MOCVD 反應系統內,生長HgDdTe時,在熱力學平衡的狀況下,必須以何種進料濃度才 能獲得預期的組成。吾人並且成功地將傳統化工熱力學的計算方法,推展至缺陷熱力 學的計算,並可獲得多相,多成份(包括缺陷物質)在各個平衡狀態下的濃度。 在實驗方面,吾人以二甲基鎘及二乙基碲為反應物在(100) GaAs及(111) GaAs基板上 成長磊晶,並且觀察到CdTe磊晶在(111) GaAs上的生長速率比在(100) GaAs上快約1 倍,此一生長速率的差距,主要是由於不同晶面的層間距不同,以及二者表面原子鍵 結方式不同,致使表面反應程序不同所造成。 在(100)CdTe 的生長系統中,當吾人增加DMCd的進料量時,生長速率仍保持不變,但 是若反過來增加DETe的進料量時,生長速率會隨著增加,直到DETe/DMCd>3 時,才達 到一個飽和的狀態,這是由於DETe的擴散速率及吸附力較DMCd小所造成的。 另一方面生長速率也隨著磊晶厚度的增加而增加,這是由於磊晶內部由界面上晶格不 匹配漸漸消失,另一方面次晶粒擴大,次晶粒界減少也使差排密度減少,而促成生長 速率的增加。 在(111)DdTe(111)GaAs的成長系統中,吾人可觀察到兩種不同的生長機構。主要的原 因是由於生長溫度不同,造成提供堆疊原子的量及表面擴散速率不同所致。這種生長 機構的變化,並且可以在表面型態,雙晶X-光繞射的半高寬及磊晶本身面間距的變化 獲得印證。由DCRC測量,並可獲知磊晶內部的差排密度及界面晶格不匹配所引起的應 變,將隨著磊晶厚度的增加而減少。
author2 ZHOU, GENG-SHENG
author_facet ZHOU, GENG-SHENG
GLAO, YING-RUI
廖瑛瑞
author GLAO, YING-RUI
廖瑛瑞
spellingShingle GLAO, YING-RUI
廖瑛瑞
有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
author_sort GLAO, YING-RUI
title 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
title_short 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
title_full 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
title_fullStr 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
title_full_unstemmed 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
title_sort 有機金屬化學氣相沈積法成長碲化鎘異質磊晶及其熱力學研究
publishDate 1990
url http://ndltd.ncl.edu.tw/handle/48664346598129339772
work_keys_str_mv AT glaoyingrui yǒujījīnshǔhuàxuéqìxiāngchénjīfǎchéngzhǎngdìhuàlìyìzhìlěijīngjíqírèlìxuéyánjiū
AT liàoyīngruì yǒujījīnshǔhuàxuéqìxiāngchénjīfǎchéngzhǎngdìhuàlìyìzhìlěijīngjíqírèlìxuéyánjiū
_version_ 1718361154479194112