Estimation of Long-Memory Parameter in ARFIMA Models: ARMA Approximation Approach

碩士 === 國立清華大學 === 統計學研究所 === 90 === A new method for estimating long-memory parameter in ARFIMA Models is proposed based on ARMA approximation. The Kullback-Leibler discrepancy is used to find a best ARMA approximation for a FI(d) model. The performance of the new estimator is investigated and compa...

Full description

Bibliographic Details
Main Authors: Chang, Ya-Mei, 張雅梅
Other Authors: Hsu, Nan-Jung
Format: Others
Language:en_US
Published: 2002
Online Access:http://ndltd.ncl.edu.tw/handle/47273124552412049110