Investigation of High Power SBD with Lateral Super Junction edge Termination

碩士 === 國立成功大學 === 微電子工程研究所碩博士班 === 91 === Schottky barrier diodes (SBDs) with low forward voltage drop (VF), low reverse leakage current (IR), low power loss and high breakdown voltage (VBD), etc., have been urgently required in electronic industry. Essentially, VF and IR of SBDs are key factors in...

Full description

Bibliographic Details
Main Authors: Chih-Wei Chen, 陳治維
Other Authors: Bor-Wen Liu
Format: Others
Language:en_US
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/38213598049648927959
id ndltd-TW-091NCKU5428033
record_format oai_dc
spelling ndltd-TW-091NCKU54280332016-06-22T04:14:02Z http://ndltd.ncl.edu.tw/handle/38213598049648927959 Investigation of High Power SBD with Lateral Super Junction edge Termination 具超接面邊緣終絕設計高功率蕭基二極體之研製 Chih-Wei Chen 陳治維 碩士 國立成功大學 微電子工程研究所碩博士班 91 Schottky barrier diodes (SBDs) with low forward voltage drop (VF), low reverse leakage current (IR), low power loss and high breakdown voltage (VBD), etc., have been urgently required in electronic industry. Essentially, VF and IR of SBDs are key factors in determining the power loss of SBDs for power applications, which strongly depend on the Schottky barrier height (SBH). In general, a larger SBH would result in a lower IR but a larger VF, while a lower SBH shows an inverse situation. How to solve or release the trade-off problem between VF and IR, how to improve the breakdown voltage of SBDs to approach its theoretical value, and how to minimize the power loss of SBDs without sacrificing other device properties, are still open problems in the SBDs fabrication. In this thesis, a novel device design with a RESURF type lateral super-junction for edge termination, a novel polysilicon (poly-Si) guarding ring and related fabrication process including Boron ion implantation for IR reduction and VBD enhancement are presented to tackle the open problems mentioned above. Both theoretical and experimental studies including optimum device design and device fabrication process have been conducted in this study. Special emphasis for the theoretical study is focused on the design and simulation of edge termination with super-junction, poly-Si floating ring, guard ring, and field plate. Influence of device structural parameters used in the device geometry was investigated in detail. In this thesis, technology related to high breakdown voltage device design and fabrication process has been established. It is found that the device and fabrication technology developed in the present study could be successfully applicable to the realization of SBDs with VBD > 110V, IR < 10uA/cm2,VF < 0.5V @1A/cm2 and an adjustable SBH (0.778~0.796 V). Bor-Wen Liu Shui-Jinn Wang 劉博文 王水進 2003 學位論文 ; thesis 59 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 微電子工程研究所碩博士班 === 91 === Schottky barrier diodes (SBDs) with low forward voltage drop (VF), low reverse leakage current (IR), low power loss and high breakdown voltage (VBD), etc., have been urgently required in electronic industry. Essentially, VF and IR of SBDs are key factors in determining the power loss of SBDs for power applications, which strongly depend on the Schottky barrier height (SBH). In general, a larger SBH would result in a lower IR but a larger VF, while a lower SBH shows an inverse situation. How to solve or release the trade-off problem between VF and IR, how to improve the breakdown voltage of SBDs to approach its theoretical value, and how to minimize the power loss of SBDs without sacrificing other device properties, are still open problems in the SBDs fabrication. In this thesis, a novel device design with a RESURF type lateral super-junction for edge termination, a novel polysilicon (poly-Si) guarding ring and related fabrication process including Boron ion implantation for IR reduction and VBD enhancement are presented to tackle the open problems mentioned above. Both theoretical and experimental studies including optimum device design and device fabrication process have been conducted in this study. Special emphasis for the theoretical study is focused on the design and simulation of edge termination with super-junction, poly-Si floating ring, guard ring, and field plate. Influence of device structural parameters used in the device geometry was investigated in detail. In this thesis, technology related to high breakdown voltage device design and fabrication process has been established. It is found that the device and fabrication technology developed in the present study could be successfully applicable to the realization of SBDs with VBD > 110V, IR < 10uA/cm2,VF < 0.5V @1A/cm2 and an adjustable SBH (0.778~0.796 V).
author2 Bor-Wen Liu
author_facet Bor-Wen Liu
Chih-Wei Chen
陳治維
author Chih-Wei Chen
陳治維
spellingShingle Chih-Wei Chen
陳治維
Investigation of High Power SBD with Lateral Super Junction edge Termination
author_sort Chih-Wei Chen
title Investigation of High Power SBD with Lateral Super Junction edge Termination
title_short Investigation of High Power SBD with Lateral Super Junction edge Termination
title_full Investigation of High Power SBD with Lateral Super Junction edge Termination
title_fullStr Investigation of High Power SBD with Lateral Super Junction edge Termination
title_full_unstemmed Investigation of High Power SBD with Lateral Super Junction edge Termination
title_sort investigation of high power sbd with lateral super junction edge termination
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/38213598049648927959
work_keys_str_mv AT chihweichen investigationofhighpowersbdwithlateralsuperjunctionedgetermination
AT chénzhìwéi investigationofhighpowersbdwithlateralsuperjunctionedgetermination
AT chihweichen jùchāojiēmiànbiānyuánzhōngjuéshèjìgāogōnglǜxiāojīèrjítǐzhīyánzhì
AT chénzhìwéi jùchāojiēmiànbiānyuánzhōngjuéshèjìgāogōnglǜxiāojīèrjítǐzhīyánzhì
_version_ 1718314068142456832