Fabrication and Investigation on Boron Nitride based Thin Filmfor Non-Volatile Resistance Switching Memory

碩士 === 國立中山大學 === 光電工程學系研究所 === 99 === In recent years, due to the rapid development of electronic products, non-volatile memory has become more and more important. However, flash memory has faced some physical limits bottleneck with size scaling-down. In order to overcome this problem, alternative...

Full description

Bibliographic Details
Main Authors: Kai-Hung Cheng, 鄭凱弘
Other Authors: Ann-Kuo Chu
Format: Others
Language:en_US
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/02373020074874570399
Description
Summary:碩士 === 國立中山大學 === 光電工程學系研究所 === 99 === In recent years, due to the rapid development of electronic products, non-volatile memory has become more and more important. However, flash memory has faced some physical limits bottleneck with size scaling-down. In order to overcome this problem, alternative memory technologies have been extensively investigated, including ferroelectric random access memory (FeRAM), magneto resistive RAM (MRAM), phase-change RAM (PRAM), and resistive RAM (RRAM). All of this potential next generation non-volatile memory, the resistive random access memory has most advantages such as simple structure, lower consumption of energy, lower operating voltage, high operating speed, high storage time and non-destructive access, which make it be the most potential candidate of the next generation non-volatile memory. Many studies have proposed to explain the resistance switching phenomenon, which is due to the metallic filament or the oxygen vacancies. Therefore, in order to investigate the influence of resistance switching characteristic by metal or oxygen, we choose the non-metal contained boron oxy-nitride film as the insulator layer and successfully make the resistance has the switchable characteristic of this device. Furthermore, we improved the iv stability by using the Gadolinium-doped method in the boron oxy-nitride based film. In addition, we observed the negative current differential phenomenon during the set process, which can further controlled by lower operating voltage to achieve the interfacial resistance switching. We think that is due to the formation of nitrogen titanium oxide at the interface between insulator layer and titanium nitride electrode, which caused the Schottky barrier formation and reduced the current flow. In addition, current conduction fitting can also confirm this hypothesis. Besides, titanium nitride easily bond with oxygen ions; moreover, the oxygen ions can be easily disturbed at higher temperature ambient. We believed there may easily form the nitrogen titanium oxide layer in higher temperature environment; which also improve by a series of varied temperature experiments. However, this nitrogen titanium oxide layer formed naturally very easily, resulting in an inevitable problem of data retention time, which wish to be resolved in the future.